期刊文献+

无约束优化一阶算法的几类加速技巧

SEVERAL KINDS OF ACCELERATION TECHNIQUES FOR UNCONSTRAINED OPTIMIZATION FIRST-ORDER ALGORITHMS
原文传递
导出
摘要 求解无约束优化问题的一阶算法具有迭代简单、存储量小的优点,在求解大规模问题时具有一定的优势.为提升其收敛速度,近些年发展出了多种加速技巧.本文以最一般的求解无约束优化的梯度法为切入点,介绍常见的加速梯度法的技巧与策略,并进一步介绍这些加速技巧在邻近点算法、复合优化问题和随机优化问题中的表现形式.另外,本文还总结了一些其它仅用一阶信息就取得加速效果的策略和特殊问题中出现的加速方法. The first-order algorithms provide several advantages in tackling large-scale problems,as well as the benefits of simple iteration and little storage.To speed up the convergence,numerous acceleration strategies have been created recently.The gradient method of unconstrained optimization is used as the starting point for this paper,and the common techniques and strategies of the accelerated gradient method are also introduced.These acceleration techniques are further explained in terms of the expressions in the proximal point algorithm,composite optimization problem and stochastic optimization problem.Moreover,this paper provides a summary of additional ways for acceleration strategies using only first-order information and acceleration techniques that are utilized in specific problems.
作者 陈永鑫 韩德仁 Chen Yongxin;Han Deren(LMIB,Beihang University,School of Mathematical Sciences,Beijing 100080,China)
机构地区 LMIB
出处 《计算数学》 CSCD 北大核心 2024年第2期213-231,共19页 Mathematica Numerica Sinica
基金 国家自然科学基金(12131004、12126603)资助.
关键词 无约束优化 一阶算法 加速技巧 Unconstrained optimization First-order algorithms Acceleration techniques
  • 相关文献

参考文献5

二级参考文献24

  • 1何炳生,杨振华,廖立志.A new approximate proximal point algorithm for maximal monotone operator[J].Science China Mathematics,2003,46(2):200-206. 被引量:9
  • 2袁亚湘.信赖域方法的收敛性[J].计算数学,1994,16(3):333-346. 被引量:60
  • 3Ya-xiang Yuan.A NEW STEPSIZE FOR THE STEEPEST DESCENT METHOD[J].Journal of Computational Mathematics,2006,24(2):149-156. 被引量:16
  • 4M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim., 7 (1997), 26-33.
  • 5M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos and G.D. Magoulas, A class of gradient unconstrained minimization algorithms with adaptive stepsize, J. Comput. and Appl. Math., 114(2000), 367-386.
  • 6H. Akaike, On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method, Ann. Inst. Statist. Math. Tokyo, 11 (1959), 1-16.
  • 7J. Barzilai and J.M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal, 8(1988), 141-148.
  • 8A. Cauchy, Methode generale pour la resolution des systems d'equations simultanees, Comp.Rend. Sci. Paris, 25 (1847), 46-89.
  • 9Y.H. Dai, Alternate step gradient method, Report AMSS-2001-041, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, 2001.
  • 10Y.H. Dai, J.Y. Yuan, and Y. Yuan, Modified two-point stepsize gradient methods for unconstrained optimization, Computational Optimization and Applications, 22 (2002), 103-109.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部