摘要
在SVM模型的基础上,引入遗传算法与模拟退火算法,提出了一种GSA优化的SVM新模型。该模型实现参数寻优的主要思路为:首先利用GA全局搜索能力对SVM参数空间进行全局搜索,并将搜索得到最优解作为SA算法初始值;其次发挥SA算法在局部搜索中的优势,并将SA算法获得的解作为新一轮GA算法的初始值。通过上述全局搜索与局部搜索的不断迭代实现SVM模型最优参数的获取。使用某测区控制点GNSS观测数据对本文提出的高程拟合模型进行检验,结果表明,与传统的SVM模型相比,本文提出的GSA-SVM模型的高程拟合精度更高,在实际工程项目中的应用价值更高。
Based on the SVM model,this paper introduces genetic algorithm and simulated annealing algorithm,and proposes a new SVM model optimized by GSA.The main idea of parameter optimization of the model is as follows:firstly,the global search ability of GA is used to search the SVM parameter space,and the optimal solution is taken as the initial value of SA algorithm;secondly,it gives full play to the advantages of SA algorithm in local search,and takes the solution obtained by SA algorithm as the initial value of a new round of GA algorithm.Through the continuous iteration of global search and local search,the optimal parameters of SVM model are obtained.Using the GNSS observation data of the control point in a survey area to test the elevation fitting model proposed in this paper,the results show that compared with the traditional SVM model,the elevation fitting accuracy of the GSA-SVM model proposed in this paper is higher and has higher application value in practical engineering projects.
作者
桑玉田
SANG Yutian(Zhejiang Institute of Surveying and Mapping Science and Technology,Hangzhou 310030,China)
出处
《测绘与空间地理信息》
2024年第5期211-214,共4页
Geomatics & Spatial Information Technology
关键词
支持向量机
遗传算法
模拟退火
全球导航卫星系统
高程拟合
support vector machine
genetic algorithm
simulated annealing
global navigation satellite system
elevation fitting