期刊文献+

基于多尺度特征信息的脑肿瘤MRI图像分割网络

Brain tumor MRI image segmentation network based on multi-scale feature information
下载PDF
导出
摘要 针对脑肿瘤核磁共振成像因大脑组织边界重叠和图像噪声干扰导致分割精度低的问题,提出一种基于多尺度特征信息的脑肿瘤分割模型.该模型将注意力机制等最新技术引入2D U-Net网络,通过独特的信息融合及由Transformer和卷积神经网络并行结构组成的双分支模块,提取全局和局部区域的多尺度信息特征,以突出肿瘤区域的病变信息.并用标准的Figshare脑肿瘤数据集评估此模型.实验结果表明,该模型在Dice分数、平均Jaccard系数、Precision和Recall上分别提高了3.01%、2.6%、3.08%和4.73%,HD95降低了0.1187,评估指标性能高于现有先进方法.同时,消融实验表明,信息融合模块和双分支模块有助于提高现有脑肿瘤磁共振成像的分割精度. To address the issue of low segmentation accuracy in brain tumor magnetic resonance imaging(MRI)due to overlapping brain tissue boundaries and image noise interference,a brain tumor segmentation model based on multi-scale feature information is proposed.This model incorporates the latest technology such as the attention mechanism into a 2D U-Net network.It utilizes a unique information fusion approach and a dual-branch module composed of Transformer and convolutional neural network parallel structures to extract multi-scale information features from both global and local regions,thereby highlighting the pathological information in tumor areas.The model was evaluated based on the standard Figshare brain tumor dataset.The experimental results show improvements in Dice score,average Jaccard index,Precision,and Recall by 3.01%,2.6%,3.08%and 4.73%,respectively,while the HD95 metric decreased by 0.1187.These evaluation metrics outperform existing state-of-the-art methods.Additionally,ablation experiments demonstrate that both the information fusion module and the dual-branch module contribute to enhancing the accuracy of existing brain tumor MRI segmentation.
作者 余和沅 刘文忠 斯烺 YU Heyuan;LIU Wenzhong;SI Lang(School of Computer Science and Engineering,Sichuan University of Science and Engineering,Zigong Sichuan 643000)
出处 《宁夏师范学院学报》 2024年第4期100-112,共13页 Journal of Ningxia Normal University
关键词 脑肿瘤分割 注意力机制 并行结构 多尺度信息 Brain tumor segmentation Attention mechanism Parallel structure Multi-scale information
  • 相关文献

参考文献3

二级参考文献18

  • 1Pew-Thian Yap, Paramesran R. An efficient method for the computa- tion of Legendre moments [J]. Pattern Analysis and Machine Intelli- gence, IEEE Transactions on Volume 27, Issue 12, Dec 2005 ,Page (s): 1996-2002.
  • 2Ahmadian A, Faramarzi E, Sayadian. Image indexing and retrieval us- ing Gabor wavelet and Legendre moments [J]. Engineer ing in Medicine and Biology Society, 2003,Proceedings of the 25th Annual International Conference of the IEEE Volume 1, 17-21 Sept 2003, Page(s):560 - 563.
  • 3Foulonneau A, Charbonnier P, Heitz F. Affine-invariant geo metric shape priors for region-based active contours [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on Volume 28, Issue 8, Aug 2006,Page(s): 1352 - 1357.
  • 4Xin, Y, Pawlak, M, Liao, S. Accurate Computation of Zemike Mo- ments in Polar Coordinates [J]. Image Proceeding, IEEE Transactions on Volume 16, Issue 2, Feb 2007, Page(s):581 - 587.
  • 5Belkasim, S, Hassan E, Obeidi T. Radial Zemike moment invariants [C]. Computer and Information Technology, 2004,CIT04,The Fourth International Conference on 14-16 Sept 2004 ,Page(s):790 - 795.
  • 6Tsong-Wuu Lin, Yun-Feng Chou. A comparative study of Zemike mo- ments [C].Web Intelligence, 2003,WI 2003,Proceedings,IEEE/WIC International Conference on 13-17 Oct 2003 ,Page(s):516 - 519.
  • 7Hae-Kwang Kim, Jong-Deuk IOm, Dong-Gyu Sim, Dae-Ⅱ Oh. A mod- ified Zernike moment shape descriptor invariant to translation, rota- tion and scale for similarity-based image retrieval [J]. Multimedia and Expo, 2000,ICME 2000,2000 IEEE International Conference on Vol- ume 1, 30 July-2 Aug 2000, Page(s):307 - 310.
  • 8Dengsheng Zhang, Guojun Lu. Improving retrieval performance of Zernike moment descriptor on affined shapes [C]. Multimedia and Expo, 2002,I IEEE International Confer- ence on Volume 1, 26-29 Aug 2002, Page(s):205 - 208.
  • 9苏环 李弼程.4种矩描述子在形状检索中的性能比较.中国图像图形学报,2003,:403-406.
  • 10周非亚,李松毅,於文雪,罗立民.Legendre矩的一种有效算法[J].计算机学报,2000,23(8):862-865. 被引量:5

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部