期刊文献+

Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

下载PDF
导出
摘要 Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operationposes a significant threat to the safety of both life and property. Consequently, it becomes imperative to conductdamage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types ofpotential damage, and the presence of similar vibration data in adjacent locations make it challenging to achievesatisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environmentalnoise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and antinoisecapabilities of bleacher damage diagnosis, this paper proposes improvements to the existing ConvolutionalNeural Network with Training Interference (TICNN). The result is an advanced Convolutional Neural Networkmodel with superior accuracy and robust anti-noise capabilities, referred to as Enhanced TICNN (ETICNN).ETICNN autonomously extracts optimal damage-sensitive features from the original vibration data. To validatethe superiority of the proposed ETICNN, experiments are conducted using the bleacher model from Qatar Universityas the subject. Comparative studies under identical experimental conditions involve TICNN, Deep ConvolutionalNeural Networks with wide first-layer kernels (WDCNN), and One-Dimensional ConvolutionalNeural Network (1DCNN). The experimental findings demonstrate that the ETICNN model achieves the highestaccuracy, approximately 99%, and exhibits robust classification abilities in both Phases I and II of the damagediagnosis experiments. Simultaneously, the ETICNN model demonstrates strong anti-noise capabilities, outperformingTICNN by 3% to 4% and surpassing other models in performance.
出处 《Structural Durability & Health Monitoring》 EI 2024年第3期321-339,共19页 结构耐久性与健康监测(英文)
基金 the Nature Science Foundation of Hebei Province Grant No.E2020402060 Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province(Hebei University of Engineering)under Grant 202206.
  • 相关文献

参考文献7

二级参考文献65

共引文献279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部