摘要
反兴奋剂领域对技术的变革有着天然的敏感性,受益于人工智能技术的快速发展,兴奋剂管制渐趋迈向智能化。通过调研文献资料、运用逻辑分析等方法,探讨人工智能赋能兴奋剂管制的价值意蕴、现实挑战与发展策略。研究认为,基于人工智能的反兴奋剂情报整合和检查、样本检测和分析、智慧管理为兴奋剂管制带来情检一体、多维锁定、全链支撑的模式变革。但是,兴奋剂管制中人工智能的应用也面临着模型误差、意识无涉的技术性难题,权益侵害、责任模糊的合法性挑战,算法歧视、黑箱效应、技术僭越的伦理性风险。为更好地促进人工智能技术在兴奋剂管制中的应用,应当从数据质量控制、算法驱动变革、加强设计保护完善技术控制;从运动员权利保护的构建、数据和算法规制的形塑、监管和责任的设置优化法律体系;从技术辅助的定位、数字人权的导向、多方参与的治理增强伦理适配。
The field of anti-doping exhibits a natural sensitivity to technological advancements,and with the rapid development of artificial intelligence(AI)technology,doping control is gradually transitioning towards intelligence-driven approaches.This study comprehensively explores the value implications,practical challenges,and development strategies of AI-enabled doping control,drawing upon literature review,logical analysis,and other research methods.The research suggests that AI-based integration and examination of anti-doping intelligence,sample testing and analysis,and intelligent management bring about transformative model changes in the doping control landscape,enabling intelligence integration and testing into one,multidimensional targeting,and comprehensive support throughout the entire chain.However,the application of AI in doping control also faces technical challenges such as model errors and unconscious bias,legitimacy concerns regarding infringements of rights and blurred responsibilities,as well as ethical risks including algorithmic discrimination,black box effects,and technological overreach.To better promote the effective utilization of AI technology in doping control,efforts should focus on data quality control,algorithm-driven transformations,and the implementation of robust technical safeguards.Additionally,the legal framework should prioritize athlete rights protection,shape regulations governing data and algorithms,and optimize oversight and accountability mechanisms.Ethical alignment can be achieved through positioning technology as an aid,prioritizing digital human rights,and fostering multistakeholder participation in governance.
作者
徐伟康
XU Weikang(School of Law,China University of Political Science and Law,Beijing 102299,China)
出处
《体育科学》
北大核心
2024年第1期50-58,F0003,共10页
China Sport Science
基金
国家社会科学基金重大项目(20&ZD337)。
关键词
人工智能
兴奋剂管制
数据分析
风险规制
权利保护
artificial intelligence
doping control
data analysis
risk regulation
rights protection