摘要
随着文旅行业持续发展,网络评论文本成为影响大众选择出游景点的重要因素。采用文本分析方法对携程网中成都大熊猫繁育研究基地的旅游者评论文本进行研究。使用ROST ContentMining6和UCINET 6软件,对旅游者网络评论进行语义网络分析、中心性分析与情感分析。研究发现:社会语义网络分析“熊猫”“花花”构成一级核心高频词,“排队”“可爱”“成都”为二级核心词汇,且与一级词汇互相关联;旅游者积极情绪占比达75.15%,中性情绪占比为12.13%,消极情绪为12.72%。
The text analysis method is used to study the tourist review text of Ctrip’s Chengdu Research Base of Giant Panda Breeding.ROST ContentMining6 and UCINET 6 are used to conduct semantic network analysis,centrality analysis and emotion analysis on tourist online reviews.The research results are as follows:Social Semantic Network analysis“panda”and“Huahua”constitute the first-level core high-frequency words,“queue”,“cute”and“Chengdu”are the second-level core words,and are interrelated with the first-level words.The positive emotion accounted for 75.15%,the neutral emotion accounted for 12.13%,and the negative emotion accounted for 12.72%.
作者
何玥
HE Yue(School of Literature,Journalism&Communication,South-Central Minzu University,Wuhan 430074,China)
出处
《科技和产业》
2024年第9期59-64,共6页
Science Technology and Industry