期刊文献+

精准序列替换基因组编辑技术研究进展 被引量:1

Research Progress of Genome Editing Technologies for Precise Sequence Replacement
下载PDF
导出
摘要 利用基因组编辑技术可以对微生物、动植物和人类细胞系基因组进行精准的序列替换,加速生物育种进程和遗传性疾病治疗,从而在农业生产和医疗上取得突破。基因组序列替换策略主要分为2种:第1种依赖DNA双链断裂,包括将CRISPR-Cas分别与同源重组、单链退火、微同源末端连接等DNA修复途径相结合,或由位点特异性重组系统介导,实现精准的序列替换;第2种依赖DNA单链断裂,主要包括引导编辑、碱基编辑器等技术。本研究综述了不同精准序列替换策略和技术及相关研究进展,理清各策略和技术的优缺点,有助于根据基因组编辑的目的,选择适合的技术和方法实现精准高效的序列替换。 Genome editing technologies have been used for precise genome sequence replacement in microbe,animals,plants,and human cell lines and thus speeding up the process of biological breeding and genetic disease treatment,making a breakthrough in agricultural production and medicine.Two kinds of strategies are commonly utilized for precise sequence replacement.The first kind relies on DNA double-strand break to realize precise sequence replacement,including the combination of CRISPR-Cas system with DNA repair pathway such as homologous recombination,single strand annealing and micro-homologous end joining,and site-specific-recombination-mediated precise sequence replacement.The second kind relies on the DNA single-strand break and mainly includes the technical strategy such as prime editing and base editor.This study mainly reviews the progress on different genome editing strategies and related technologies for precise sequence replacement.This will be of help to choosing the most suitable technical strategy according to the advantages and disadvantages of them,to realize precise and efficient sequence replacement.
作者 许永汉 齐泽宇 李文静 赵啊慧 武德传 XU Yonghan;QI Zeyu;LI Wenjing;ZHAO Ahui;WU Dechuan(School of Agronomy,Anhui Agricultural University,Hefei 230036,China)
出处 《云南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期162-175,共14页 Journal of Yunnan Agricultural University:Natural Science
基金 安徽省高校协同创新项目(GXXT-2019-033) 安徽省自然科学基金项目(1808085MC87) 安徽农业大学高层次人才项目(2018008)。
关键词 基因组编辑 序列替换 DNA双链断裂 DNA单链断裂 DNA修复 genome editing sequence replacement DNA double-strand break DNA single-strand break DNA repair
  • 相关文献

参考文献5

二级参考文献180

  • 1Baum J A. Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol, 1994, 176:2835--2845.
  • 2Mahillon J, Lereclus D. Structural and functional-analysis of Tn4430-identification of an integrase-like protein involved in the co-integrate-resolution process. EMBOJ. 1988,7:1515- 1526.
  • 3Bastos M D D, Murphy' E. Transposon Tn554 encodes three products required for transposition. EMBO J, 1988, 7:2935 2941.
  • 4Poyartsalmeron C, Trieucuot P. Carlier C. et al. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J, 1989, 8:2425--2433.
  • 5Su Y A, Clev, elI D B. Characterization of thc left 4 Kb of conjugative transposon Tn916: determinants involved in excision. Plasmid, 1993, 30:234 -250.
  • 6Carrasco C D. Buettner J A, Golden J W. Programmed DNA rearrangement of a cyanobacterial hupl Gene in heterocysts. Proc Natl Acad Sci USA, 1995.92:791- 795.
  • 7Klemm P, Two regulatory fim Genes, fimB and limE, control the phase variation of type I fimbriae in Escherichia coli. EMBO J, 1986, 5: 1389- 1393.
  • 8Hartley J L. Donelson J E. Nucleotide-sequence of the yeast plasmid. Nature, 1980, 286:860--865.
  • 9Massad G. Mobley H L T. Genetic organization and complete sequence of the Proteus' mirabilisprnffimbrial operon. Gene, 1994, 150: 101-- 104.
  • 10Li X. Eockatell C V, Johnson D E, et al. ldentificatiola of Mrpl as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol, 2002, 45:865--874.

共引文献28

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部