摘要
为了解决移动机器人在低纹理场景中的定位精度较低且容易跟踪丢失问题,本文设计了一种点线特征提取和匹配策略,并以此构建了视觉惯性同时定位和建图系统。提出线特征提取和匹配算法,通过改良线特征提取算法的隐藏参数,提高了线特征提取的精度。利用点线特征不同匹配筛选框架减少误匹配的数目,得出了可以应用于视觉惯性同时定位和建图系统的线特征提取匹配算法。在现有视觉惯性框架中引入提出的线特征约束,搭建了能在未知低纹理环境下鲁棒运行的视觉惯性同时定位及建图系统。研究表明:在真实环境中的移动机器人定位实验证明了该系统的精度和鲁棒性优于现有的视觉惯性框架,其室内定位精度提高了24.2%,走廊定位精度提高了8%,对于移动机器人在低纹理场景下的高精度定位具有较高价值。
The accuracy of mobile robot localization in low-texture scenes is often compromised,leading to frequent tracking loss.To solve this problem,this study proposes an innovative point-line feature extraction and matching strategy incorporated into the visual-inertial simultaneous localization and mapping(SLAM)system.The approach begins by proposing a line feature extraction and matching algorithm.Refining the hidden parameters of the line feature extraction algorithm improves accuracy.Subsequently,diverse matching screening frameworks for point-line features are employed to reduce mismatches.This approach results in a line feature extraction matching algorithm suitable for the visual-inertial SLAM system.By integrating the proposed line feature constraint into the current vis-ual-inertial framework,this study establishes a robust visual-inertial SLAM system suitable for operation in unknown low-texture environments.Experimental validation with a mobile robot in a real-world setting demonstrates superior accuracy and robustness of the proposed strategy compared with those of the existing visual-inertial framework.The system enhances indoor localization accuracy by 24.2%and corridor localization accuracy by 8%,providing sub-stantial value for high-precision mobile robot localization in low-texture scenes.
作者
姚建均
李英朝
吴杨
唐瑞卓
于新达
闫宇坤
YAO Jianjun;LI Yingzhao;WU Yang;TANG Ruizhuo;YU Xinda;YAN Yukun(College of Mechanical and Electrical Engineering,Harbin Engineering University,Harbin 150001,China;Vivo Mobile Communication Co.,Ltd.,Dongguan 523850,China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024年第4期771-778,共8页
Journal of Harbin Engineering University
基金
黑龙江省自然科学基金项目(E2018019).
关键词
同时定位及建图
点线特征
视觉惯性里程计
单目视觉
移动机器人感知
特征匹配
低纹理
回环检测
simultaneous localization and mapping
point-and-line features
visual-inertial odometer
monocular vi-sion
mobile robot perception
feature matching
low texture
loop detection