期刊文献+

基于多尺度纹理特征的海底底质样本增强方法

Sample enhancement methods based on multiscale texture features applied to seabed sediment classification
下载PDF
导出
摘要 针对多波束海底底质分类模型构建受限于样本和特征对海底底质类型表征不足、模型稳定性差等问题,利用多尺度滑动窗口法提取声学纹理特征,结合K-均值聚类分析其精度,实现了多尺度纹理特征的优选,并利用多尺度纹理特征并辅以地形特征结合SLIC样本增强方法,实现了底质样本的有效扩充。同时,利用随机森林、BP神经网络、K最邻近、支持向量机等4种经典监督分类模型训练预测和评估所扩充的样本数据,最终总体分类精度均达到90%以上,kappa系数达到0.85以上。 To address the problems that the construction of multibeam seabed sediment classification model is limited by the insufficient characterization of seabed sediment types by samples and features and the poor stability of the model,this paper uses the multi-scale sliding window method to extract acoustic texture features.The preference of multi-scale texture features are also achieved by combining the K-means clustering to analyze its accuracy.The sediment samples are expanded effectively using multi-scale texture features and supplements them with topographic features combined with the SLIC sample enhancement method.Meanwhile,four classical supervised classification models,including Random Forest,Back Propagation Neural Network,K-Nearest Neighbor,and Support Vector Machine are trained to predict and evaluate the expanded sample data.The result show that final overall classification accuracy reaches more than 90%,and the kappa coefficient reaches more than 0.85.
作者 张少华 胡海洋 王朋程 崔晓东 王亚雪 ZHANG Shaohua;HU Haiyang;WANG Pengcheng;CUI Xiaodong;WANG Yaxue(The Third Shandong Institute of Geology and Mineral Exploration,Yantai 264004,China;College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《海洋测绘》 CSCD 北大核心 2024年第2期31-35,共5页 Hydrographic Surveying and Charting
基金 国家自然科学基金(52201400) 山东省自然科学基金(ZR2022QD043) 山东省第三地质矿产勘查院科技创新基金(SYKJ-202205) 广东省促进经济高质量发展(海洋经济发展)海洋六大产业专项(GDNRC[2023]42) 浙江省水利河口研究院(浙江省海洋规划设计研究院)2022年度院长科学基金(ZIHE21Y005)。
关键词 海底底质分类 反向散射强度 多尺度纹理特征 样本增强 监督分类 classification of seabed sediment backscatter intensity multiscale texture features sample enhancement supervised classification
  • 相关文献

参考文献5

二级参考文献40

  • 1朱芳芳,李仲勤,杨树文,杨猛.特征分量的城市建筑物面向对象提取方法[J].测绘科学,2020,45(1):84-91. 被引量:10
  • 2邢立新,吕凤军,潘军,孟涛,范继璋.遥感蚀变信息场的确立及其信息提取[J].遥感信息,2006,28(4):12-14. 被引量:6
  • 3刘卓夫,桑恩方.基于小波域统计——共生矩阵的声纳图像识别[J].系统仿真学报,2004,16(8):1673-1675. 被引量:4
  • 4吕凤军,邢立新,范继璋,阮建武,孙成武,段展.遥感蚀变信息提取应用研究[J].新疆地质,2004,22(4):435-437. 被引量:13
  • 5边肇祺.模式识别[M].北京:清华大学出版社,1987..
  • 6[1]LIU Xue-jun.On the Accuracy of the Algorithms for Interpreting Grid-based Digital Terrain Model [D].Wuhan:Wuhan University,2002.(in Chinese)
  • 7[2]SKIDMORE A K.A Comparison of Techniques for the Calculation of Gradient and Aspect from A Grided Digital Elevation Model[J].International Journal of Geographical Information Systems,1989,(3): 323-334.
  • 8[3]FLORINSKY I V.Accuracy of Local Topographic Variables Derived from Digital Elevation Models[J].Int J Geographical Information Science,1998,12(1): 47-61.
  • 9[4]CHANG K,TSAI B.The Effect of DEM Resolution on Slope and Aspect Mapping[J].Cartography and Geographic Information Systems,1991,18: 69-77.
  • 10[5]BOLSTAD P V,STOWE T J.An Evaluation of DEM Accuracy: Elevation,Slope and Aspect [J].Photogrammetric Engineering and Remote Sensing,1994,60:1 327-1 332.

共引文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部