期刊文献+

基于机器学习模型的多层土壤湿度反演 被引量:2

Multi-layer soil moisture inversion based on machine learning models
下载PDF
导出
摘要 为了获取深层土壤湿度缺测值,采用支持向量机、BP神经网络和随机森林3种机器学习算法,在表层至深层土壤中利用主成分分析法选择与土壤湿度相关性显著的气象因子作为输入数据,建立多层土壤湿度反演模型反演了不同深度的土壤湿度。结果表明:随机森林模型模拟结果更加稳定,反演效果更佳;受气象因子驱动的影响,3种机器学习模型对地表0~10 cm深度内土壤湿度的反演效果更佳,对深层土壤湿度的反演效果随着深度增加而变差;增加表层土壤湿度及不同深度土壤温度作为驱动因子可以有效提高机器学习模型对深层土壤湿度的反演能力。 In order to obtain soil moisture data at deep soil layers and to complete the missing soil moisture measurements at different depths,machine learning technique is used to perform the soil moisture inversion at multi-layers from surface to root zone.Three machine learning algorithms,support vector machine(SVM),back propagation(BP)neural network and random forest(RF),are applied to construct the inversion models for the train and inversion of soil moisture data at different soil layers,and the meteorological factors,which have high correlation coefficient with the soil moisture,are selected as the input factors based on the principal component analysis(PCA)method in each layer of soil.The major findings are:the simulation results of random forest are more stable and the inversion effect is the best;due to the impact of meteorological variables,the three machine learning models perform best for the inversion of surface soil moisture at the surface soil layer within 0 to 10 cm depth;however,the inversion effect for the soil moisture at the deep zone is gradually reduced with the depth of soil layer;the addition of surface soil moisture and soil temperature at different soil layers as driven factors could improve the inversion capacity of machine learning model for the soil moisture at the deep zone.
作者 刘娣 孙佳倩 余钟波 LIU Di;SUN Jiaqian;YU Zhongbo(The National Key Laboratory of Water Disaster Prevention,Hohai University,Nanjing 210098,China;College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;Joint International Research Laboratory of Global Change and Water Cycle,Hohai University,Nanjing 210098,China;Yangtze Institute for Conservation and Development,Hohai University,Nanjing 210098,China)
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期7-14,共8页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金项目(U2240217) 水灾害防御全国重点实验室基本科研业务费自主研究项目(520004412,521013122)。
关键词 土壤湿度 机器学习 支持向量机 BP神经网络 随机森林 主成分分析法 soil moisture machine learning support vector machine back propagation neural network random forest principal component analysis
  • 相关文献

参考文献17

二级参考文献207

共引文献551

同被引文献37

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部