摘要
针对高超声速飞行器在宽飞行包线、强气动不确定性条件下的姿态控制问题,提出了一种考虑系统时频域性能指标的智能最优控制方法。该方法分为离线与在线两部分:离线过程中,根据高超声速飞行器动力学模型与线性二次调节器(LQR)控制设计方法,生成大量姿态控制仿真样本数据集,构建控制性能指标评价模型,筛选最优控制参数,建立以飞行状态与气动不确定性为输入,最优LQR控制参数为输出的神经网络映射关系;在线过程中,通过实时气动参数辨识,捕获高超声速飞行器气动不确定性,运用智能参数优化网络,使得在气动不确定性条件下,高超声速飞行器姿态控制仍为满足控制指标的最优控制参数。最后,通过仿真验证了本文提出的方法能够有效提高宽飞行包线、强不确定性情况下高超声速飞行器姿态控制的鲁棒性。
Aiming at the attitude control problem of hypersonic vehicle with wide flight envelope and strong aerodynamic uncertainty,an intelligent optimal control method considering time frequency domain performance Indicators is proposed.This method includes two parts:offline design and online design.In the off-line process,according to hypersonic vehicle dynamics model and linear quadratic regulator(LQR)control design method,a large number of attitude control simulation sample data sets are generated,the control performance index evaluation model is constructed,the optimal control parameters are screened,and the neural network mapping relationship with flight state and aerodynamic uncertainty as inputs and optimal LQR control parameters as outputs is established.In the online process,the aerodynamic uncertainty of hypersonic vehicle is captured through real-time aerodynamic parameter identification,and the intelligent parameter optimization network is used to make the attitude control of hypersonic vehicle still the optimal control parameter to meet the control index under the condition of aerodynamic uncertainty.Finally,simulation results show that the proposed method can effectively improve the robustness of hypersonic vehicle attitude control under wide flight envelope and strong uncertainty.
作者
安帅斌
刘永臻
张永亮
刘君
刘凯
AN Shuaibin;LIU Yongzhen;ZHANG Yongliang;LIU Jun;LIU Kai(School of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116081,China;Shenyang Aircraft Design and Research Institute,Shenyang 110034,China;Beijing Power Machinery Research Institute,Beijing 100074,China)
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2024年第4期603-612,共10页
Journal of Astronautics
基金
国家自然科学基金(U2141229)
基础科研项目(JCKY2022110C019)
“慧眼行动”成果转化应用项目(62402010228)
装备预研教育部联合基金项目(8091B032223)。