摘要
针对星载双线阵相机对地运动目标检测中,双线阵系统成本高、时间和空间同步性差、检测精度低的问题,提出了一种基于单面阵CMOS的双域线阵相机推扫成像方法,利用CMOS时间延迟积分(TDI)技术在固定位置间隔开窗,实现双区域推扫成像;针对两路通道数据,进行序贯模式图像采集,形成独立完整的两幅长条带图像;通过建立的双域线阵TDI相机时间与位置函数,检测并分析高速运动目标的运动特性;基于卫星推扫地球成像原理,设计并搭建了一套TDI推扫式成像试验装置,进行了高速运动目标的速度检测。试验结果表明,在CMOS像元分辨率为4096×3072,视场角为16°0'34″,行频为998 Hz,开窗间隔为3056行的情况下,绝对速度误差小于0.445%,像移速度误差为2.323 pixel/s,保证了时空同步性,进而提高检测精度,验证了本文方法的可行性。
Aiming at the problems of high cost,poor temporal and spatial synchronization and low detection accuracy in the detection of ground moving targets by spaceborne dual array cameras,a push-broom imaging method of dual-region linear array camera based on single array CMOS is proposed.CMOS time delayed and integration(TDI)technology is used to window at a fixed position interval to realize dual-region push-broom imaging.For the two-channel data,sequential mode image acquisition is performed to form two independent and complete long strip images.The motion characteristics of high-speed moving targets are detected and analyzed by establishing the time and position functions of the dual-region linear TDI camera.Based on the principle of satellite push-broom earth imaging,a TDI push-broom imaging experimental device is designed and built to detect the velocity of high-speed moving targets.The experimental results show that when the resolution of CMOS pixel is 4096×3072,the field of view angle is 16°0'34″,the line frequency is 998 Hz,and the window interval is 3056 rows,the absolute velocity error is less than 0.445%,and the image motion velocity error is 2.323 pixel/s,which ensures spatiotemporal synchronization,improves the detection accuracy,and verifies the feasibility of the method.
作者
张刘
齐晓蕊
李桂阳
王文华
吕雪莹
ZHANG Liu;QI Xiaorui;LI Guiyang;WANG Wenhua;LYU Xueying(College of Instrumentation&Electrical Engineering,Jilin University,Changchun 130012,China)
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2024年第4期638-646,共9页
Journal of Astronautics
基金
国家自然科学基金(62073150,62227812)。
关键词
航天遥感
星载相机
推扫成像
运动目标检测
Space remote sensing
Spaceborne camera
Push-broom imaging
Moving object detection