期刊文献+

基于分数阶混沌系统的文本加解密算法及数字电路实现

Text Encryption and Decryption Algorithm Based on Fractional Chaotic System and Digital Circuit Implementation
下载PDF
导出
摘要 21世纪是信息时代,信息安全备受关注。针对这一问题,本文提出了一种基于三维分数阶混沌系统的文本加解密算法。结合Grünwald-Letnikov导数定义,采用离散的数值解法构建了4个三维分数阶混沌模型。搭建好电路,在使用时随机选取1个分数阶混沌系统以产生混沌序列,并由此构造出密钥序列,再将发送端和接收端的文本信息与密钥序列进行异或处理来实现对文本的加解密,从而完成两个STM32之间的无线保密通信。测试结果表明,该算法具有良好的加密效果和安全性。 The 21st century is the information age,so information security has attracted much attention.Aiming at this problem,a text encryption and decryption algorithm based on three dimensional fractional chaotic system is proposed.Based on the definition of Grünwald-Letnikov derivative,four three dimensional fractional order chaotic models are constructed by discrete numerical method.After the circuit is built,a fractional-order chaotic system is randomly selected to generate a chaotic sequence during use,and the key series is constructed.Then the text information and the key series of the sender and receiver are XOR processed to realize the encryption and decryption of the text,so as to realize the wireless secure communication between the two STM32s.The test results show that the algorithm has good encryption effect and security.
作者 谢秋霞 张庆平 XIE Qiuxia;ZHANG Qingping(School of Electronic Engineering and Intelligent Manufacturing,Anqing Normal University,Anqing 246133,China)
出处 《安庆师范大学学报(自然科学版)》 2024年第1期66-71,共6页 Journal of Anqing Normal University(Natural Science Edition)
关键词 分数阶 混沌系统 加密 STM32 fractional order chaotic system encryption STM32
  • 相关文献

参考文献6

二级参考文献64

  • 1于清文,赵海滨,颜世玉.不同混沌系统的投影同步仿真试验[J].机械设计,2020,37(S01):5-8. 被引量:1
  • 2沈恩华,蔡志杰,顾凡及.MATHEMATICAL FOUNDATION OF A NEW COMPLEXITY MEASURE[J].Applied Mathematics and Mechanics(English Edition),2005,26(9):1188-1196. 被引量:6
  • 3刘崇新.一个超混沌系统及其分数阶电路仿真实验[J].物理学报,2007,56(12):6865-6873. 被引量:74
  • 4Lorenz E N. The essence of chaos [ M ]. London, UK:Houtledge,1993.
  • 5Stewart I. Mathematics;The Lorenz attractor exists[ J] .Nature,2000,406(6799) :948-949.
  • 6Rossler 0 E. An equation for continuous chaos [ J ].Physics Letters A,1976,57(5) :397-398.
  • 7Chen Guanrong, Ueta T. Yet another chaotic attractor[J ] .International Journal of Bifurcation and Chaos,1999,9(7) :1465-1466.
  • 8Lv Jinhu, Chen Guanrong. A new chaotic attractorcoined [ J ]. International Journal of Bifurcation andChaos,2002,12:659-661.
  • 9Lv Jinhu,Chen Guanrong,Cheng Daizhan,et al. Bridgethe gap between the Lorenz system and the Chensystem [ J ]. International Journal of Bifurcation andChaos in Applied Sciences and Engineering, 2002,12(12):2917-2926.
  • 10Wu Xiangjun, Wang Hui. A new chaotic system withfractional order and its projective synchronization [ J ].Nonlinear Dynamics,2010,61 (3) :407-417?.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部