期刊文献+

交叉分段差分进化支持向量回归的气体超声流量计测量方法

Gas ultrasonic flowmeter measurement method based on cross-segmented differential evolution support vector regression
下载PDF
导出
摘要 为了进一步提高全量程气体超声流量计的测量精度,基于多通道声波到时和实时温度,提出了一种交叉分段差分进化支持向量回归(DE-SVR)模型。考虑到气体在不同流量条件下的流体状态不同,提出了交叉分段处理的方法,采用差分进化算法优化选取支持向量回归参数。实验结果表明,对于16∼1600 m3/h全量程,交叉分段DE-SVR和传统积分方法计算气体流量的平均相对误差分别为0.00447和0.02781,前者较后者降低了83.93%;对于16∼160 m3/h小流量,交叉分段DE-SVR和无分段DE-SVR算法计算结果平均相对误差分别为0.00436和0.03214,前者较后者降低了86.43%。该方法有效避免了声道长度、探头角度以及管道直径等参数不确定性对流量计算的影响,为全量程气体流量的高精度测量提供了保障。 In order to further improve the measurement accuracy of the full-range gas ultrasonic flowmeter,based on multi-path acoustic arrival time and real-time temperature,a cross-segmented differential evolution support vector regression(DE-SVR)model is proposed.Considering that the gas is in different fluid states under different flow rates,a cross-segmented processing method is proposed,and the SVR parameters are optimized using the DE algorithm.The results show that for the full range of 16–1600 m3/h,the mean relative errors of the cross-segmented DE-SVR and the traditional integration method in calculating the gas flow rate are 0.00447 and 0.02781,respectively,and the former is 83.93%lower than the latter.For a small flow rate of 16–160 m3/h,the mean relative errors calculated by the cross-segmented DE-SVR and the unsegmented DE-SVR algorithms are 0.00436 and 0.03214,respectively,and the former is 86.43%lower than the latter.The method effectively avoids the influence of uncertainties in parameters such as acoustic channel length,probe angle and pipe diameter on the flow calculation,and provides high accuracy measurement of the full range of gas flow.
作者 贾秋红 桂生 王坤 邵剑瑛 毛捷 JIA Qiuhong;GUI Sheng;WANG Kun;SHAO Jianying;MAO Jie(Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《应用声学》 CSCD 北大核心 2024年第3期599-607,共9页 Journal of Applied Acoustics
关键词 气体超声流量计 支持向量回归 差分进化 机器学习 Gas ultrasonic flowmeter Support vector regression Differential evolution Machine learning
  • 相关文献

参考文献6

二级参考文献123

共引文献263

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部