期刊文献+

RLW方程的一个空间六阶精度非线性守恒差分格式

A Nonlinear Conservative Difference Scheme for RLW Equation with Sixth Order Spatial Accuracy
下载PDF
导出
摘要 对RLW方程的一类初边值问题提出一个高精度守恒差分算法.利用Taylor展开,在空间层做Richardson外推组合的处理,时间层采用Crank-Nicolson格式,从而在时间方向和空间方向分别达到了二阶精度和六阶精度,并合理地模拟了问题本身的两个守恒量,证明了格式的收敛性和稳定性,数值算例也验证了该方法是有效的. In this paper,a high-precision conservative difference algorithm is proposed for a class of initial boundary value problems of the RLW equation.By using Taylor expansion and Richardson extrapolation combination in the spatial layer,and using the Crank-Nicholson scheme in the temporal layer,the second-order and sixth-order accuracy in the time and space directions were achieved,respectively.The two conserved quantities of the problem were reasonably simulated,and the convergence and stability of the scheme were proved.Numerical examples also verified the effectiveness of this method.
作者 易莉佳 江跃勇 YI Lijia;JIANG Yueyong(School of Science,Xihua University,Chengdu,SiChuan 610039;College of Mathematics and Phyics,Mianyang Teachers'College,Mianyang,Sichuan 621000)
出处 《绵阳师范学院学报》 2024年第5期16-22,37,共8页 Journal of Mianyang Teachers' College
基金 国家自然科学基金项目(11701481) 四川应用基础研究项目(2019JY0387)。
关键词 RLW方程 高精度 守恒 差分格式 收敛性 稳定性 RLW equation high-precision conservation difference scheme convergence stability
  • 相关文献

参考文献7

二级参考文献47

  • 1王廷春,张鲁明.正则长波方程的新型守恒差分算法[J].高等学校计算数学学报,2005,27(S1):19-23. 被引量:13
  • 2Chang Q,J Comput Phys,1991年,93卷,360页
  • 3Wang T C,Chen J,Zhang L.Conservative Difference Methods for the Klein-Gordon-Zakharov Equations.J.Comput.Appl.Math.,2006,in press
  • 4Li S,Vu-quoc.Finite Difference Calculas Invariant Structure of a Class of Algorithms for the Nonlinear Klein-Gordon Equation.SIAM.Numer.Anal.,1995,32:1839-1864
  • 5Zhang L.A Finite Difference Scheme for Generalized Regularized Long-wave Equation.Appl.Math.Comput.,2005,28(2):962-972
  • 6Zhou Y.Application of Discrete Functional Analysis to the Finite Difference Method.Beijing:Inter.Acad.Publishers,1990
  • 7Akrivis G D.Finite Difference Discretization of the Cubic Schrodinger Equation.IMA J.Nume.Anal.,1993,13:115-124
  • 8Zhang L,Chang Q.A New Finite Difference Method for Regularized Long-wave Equation.Chinese J.Numer.Math.Appl.,2001,23:58-66
  • 9Zhang F,Perez-Ggarcia V M,Vazquez L.Numerical Simulation of Nonlinear Schrodinger Systems:a New Conservative Scheme.Appl.Math.Comput.,1995,71:165-177
  • 10Zhang F,Vazquez L.Two Energy Conservative Schemes for the Sine-Gordon Equation.Appl.Math.Comput.,1991,45:17-30

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部