期刊文献+

基于CNN-GRU神经网络的锂电池SOH估计与RUL预测

SOH Estimation and RUL Prediction of Lithium Battery Based on CNN-GRU Neural Networks
下载PDF
导出
摘要 随着近几年新能源汽车市场的蓬勃发展,消费者对锂电池的电池性能和储能系统的整体要求逐步提升。锂电池作为新能源汽车的重要组成部分,对新能源汽车品牌的经济性能具有重要影响。针对锂电池健康状态(State Of Health,SOH)估计与剩余有效工作时间(Remaining Useful Life,RUL)预测无法直接测量,为了攻克在线准确测量的难题,提出基于卷积神经网络-门控循环单元(Convolutional Neural Network-Gated Recurrent Unit,CNN-GRU)的锂电池SOH估计与RUL预测方法。运用Python编程语言在TensorFlow框架下搭建CNN-GRU神经网络,利用GRU长时间记忆能力与CNN避免了对数据的复杂前期预处理,采用NASA开放实验数据测试,经过实验结果对比,基于CNN-GRU神经网络的估算模型相对于BP、CNN、GRU单独神经网络模型拥有更高的计算精度,以及更稳定的预测结果。 With the rapid development of the new energy vehicle market in recent years,the overall requirements of consumers for the battery performance and energy storage system of lithium batteries have gradually increased.As an important part of new energy vehicles,lithium battery has an important impact on the economic performance of new energy vehicle brands.The State of Health(SOH) estimation and Remaining Useful Life(RUL) prediction of Li-ion batteries cannot be measured directly,and in order to overcome the problem of online accurate measurement,a Convolutional Neural Network-Gated Recurrent Unit(CNN-GRU) is proposed.Built upon the TensorFlow framework and Python programming language,leveraging the long-term memory capabilities of GRU and CNN to avoid the complex pre-processing of data,and using NASA open experimental data test,after the comparison of experimental results,the CNN-GRU-based estimation model demonstrates higher computational efficiency and accuracy with more stable prediction results over traditional BP,CNN,and GRU models.
作者 辛付宇 邢丽坤 刘笑 XIN Fuyu;XING Likun;LIU Xiao(College of Electrical and Information Engineering, Anhui University of Science and Technology)
出处 《上海节能》 2024年第5期819-826,共8页 Shanghai Energy Saving
关键词 锂电池 卷积神经网络 门控循环单元 健康状态 剩余有效工作时间 Lithium Battery Convolutional Neural Network Gated Recirculation Unit Health State Remaining Effective Working Time
  • 相关文献

参考文献7

二级参考文献76

  • 1王振新,秦鹏,康健强,王菁,朱国荣,向馗.基于衰退机理的三元锂离子电池SOH的诊断与估算[J].电子测量技术,2020(10):7-13. 被引量:7
  • 2吴蓓,丁明,陈闽江.基于模糊推理和多目标规划的空间负荷预测[J].电网技术,2004,28(15):48-52. 被引量:16
  • 3康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:497
  • 4Xing Y, Ma E, Tsui K, et al. Battery management systems in electric and hybrid vehicles[J]. Energies, 2011,4(11) :1840 - 1857.
  • 5Schmidt A, Bitzer M, Imre A, et al. Model-based distinction and quantification of capacity loss and rate capability fade in li-ion batteries [J]. J Power Sources, 2010,195:7634 - 7638.
  • 6Vetter J, Novak P, Wagner M. Aging mechanisms in lithium-ion batteries[J]. J Power Sources, 2009,147 269 - 281.
  • 7Zhang J, Lee J. A review on prognostics and health mo- nitoring of li-ion battery[J]. J Power Sources, 2011, 196 .. 6007 - 6014.
  • 8Kazuhiko T, Masahiro I, Kazuo T, et al. Quick testing of batteries in lithium-ion battery packs with impedance- measuring technology[J]. J Power Sources, 2004,128: 67 - 75.
  • 9Jungst R, Nagasubramanian G, Case H, et al. Accelerated calendar and pulse life analysis of lithium- ion cells[J]. J Power Sources, 2003,119(1) ..870 -873.
  • 10He W, Williard N, Osterman M, et al. Prognostics of lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method [J]. J Power Sources, 2011,19610314 - 10321.

共引文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部