期刊文献+

基于多尺度渐进式特征融合的伪装目标检测

Camouflage Object Detection Based on Multi-scale Progressive Feature Fusion
下载PDF
导出
摘要 伪装目标检测任务中目标和所处环境具有极大的相似性,只通过简单的特征提取容易使得重要信息丢失,此外,直接聚合不同层特征会引入噪声,导致预测不准确。针对这些问题,本文提出一种基于多尺度渐进式特征融合的伪装目标检测网络。该网络采用金字塔视觉Transformer作为骨干网络提取多尺度特征,利用可变形注意力对提取的多尺度特征增强,以突出伪装目标的边界;然后通过渐进式特征融合模块递增式融合相邻层特征,积累难以分辨但有效的信息,避免非相邻层之间较大语义差距;在融合过程中引入自适应空间融合操作,以减少在同一空间位置发生信息冲突问题;最终输出预测结果,实现伪装目标检测。模型在COD10K和CAMO组成的训练集上进行训练,实验结果表明本文方法与其他方法相比具有较明显优势。 The target and the environment in the camouflage object detection task exhibit great similarity.Important information is easily lost through simple feature extraction.Additionally,the direct aggregation of features from different layers introduces noise and inaccurate predictions.To address these issues,a camouflage object detection network is proposed in this paper based on multi-scale pro-gressive feature fusion.A pyramid vision Transformer is employed as the backbone network to extract multiscale features and the deformable attention is utilized to enhance the extracted multiscale features emphasizing the boundaries of the camouflaged target.Subse-quently,neighboring layers of features are incrementally fused by a progressive feature fusion module to accumulate indistinguishable but effective information and avoid large semantic gaps between non-neighboring layers.An adaptive spatial fusion operation is intro-duced in the fusion process to reduce information conflict at the same spatial location.Finally,the prediction results are output to achieve camouflage object detection.The model is trained on the training set consisting of COD10K and CAMO,and the experimental results demonstrate that the method presented in this paper has more obvious advantages compared with other methods.
作者 高彤玉 张丽红 GAO Tongyu;ZHANG Lihong(College of Physical and Electronic Engineering,Shanxi University,Taiyuan,030006,China)
出处 《网络新媒体技术》 2024年第2期27-34,44,共9页 Network New Media Technology
基金 山西省研究生创新项目(编号:2023SJ012) 山西省高等学校教学改革创新项目(编号:J2021086)。
关键词 伪装目标检测 金字塔视觉Transformer 可变形注意力 渐进式特征融合 自适应空间融合 camouflaged target detection pyramid vision Transformer deformable attention progressive feature fusion adaptive spatial fusion
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部