期刊文献+

高速铁路隧道洞口微气压波计算模型的修正

Revision of Calculation Model for Micro⁃pressure Wave atTunnel Portal of High Speed Railway
下载PDF
导出
摘要 隧道洞口微气压波随列车运行速度提高显著提升,可能影响周围建筑及居民。隧道洞口微气压波与隧道内压力波首波压力梯度密切相关。根据实车测试数据,分析隧道内不同位置压力梯度,修正了辐射立体角模型(Radiation Solid Angle Model,RSA),给出模型关键参数空间立体角的取值方法。结果表明:列车以350 km/h通过无砟轨道隧道时,从隧道入口至隧道中心附近压力波首波压力梯度逐渐提高;采用随机森林方法分析RSA模型参数特征权重并修正模型,修正后的RSA模型相对原模型对隧道洞口微气压波压力峰值的计算精度更高。提出了采用无人机或测距仪等设备测量计算隧道洞口空间立体角的三种方法。 The micro-pressure wave significantly increases with the increase of train speed,which may affect the surrounding buildings and residents.The micro pressure wave at the tunnel portal is closely related to the pressure gradient of the first wave of the pressure wave inside the tunnel.Based on the actual vehicle test data,the pressure gradient at different positions inside the tunnel was analyzed,and the radiation solid angle(RSA)model was modified.The method for determining the spatial solid angle,a key parameter of the model,was provided.The results indicate that when the train passes through a ballastless track tunnel at a speed of 350 km/h,the pressure gradient of the first wave of the pressure wave gradually increases from the tunnel entrance to the tunnel center.The random forest method was used to analyze the parameter feature weights of the RSA model.The modified RSA model has a higher calculation accuracy for the peak micro pressure wave at the tunnel portal compared to the original RSA model.Three methods for measuring and calculating the spatial solid angle of tunnel openings by equipments such as drones or rangefinders have been proposed.
作者 方雨菲 马伟斌 FANG Yufei;MA Weibin(Railway Engineering Research Institute,CARS,Beijing 100081,China)
出处 《铁道建筑》 北大核心 2024年第4期76-78,共3页 Railway Engineering
基金 中国国家铁路集团有限公司科技研究开发计划(P2021G053)。
关键词 铁路隧道 隧道气动效应 试验研究 理论分析 空间立体角 压力梯度 气动荷载 微气压波 railway tunnel tunnel aerodynamic effects test research theoretical analysis radiation solid angle pressure gradient aerodynamic loads micro-pressure wave
  • 相关文献

参考文献3

二级参考文献21

  • 1田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9. 被引量:178
  • 2李新霞,宋雷鸣,张新华.微气压波的产生机理与防治措施[J].噪声与振动控制,2006,26(4):70-72. 被引量:4
  • 3耿烽,张倩,梅元贵.缓冲结构减缓高速铁路隧道出口微压波数值比较[J].交通运输工程学报,2006,6(3):18-22. 被引量:7
  • 4中国铁道科学研究院.京沪高速铁路综合试验研究分报告之八-高速铁路气动效应试验研究[R].北京:中国铁道科学研究院,2011.
  • 5BELLENOUE M, MORINIERE V, KAGEYAMA T. Experiment 3-D simulation of the compression wave, due to train-tunnel entry[J]. Journal of Fluids and Structures, 2002, 16(5): 581-595.
  • 6KWON H B, JANG K H, KIM Y S, et al. Nose shape optimization of high-speed train for minimization of tunnel sonic boom [J]. JSME International Journal Series C: Mechanical Systems, Machine Elements and Manufacturing,2001, 44(3): 890-899.
  • 7SHIN C H, PARK W G. Numerical study of flow characteristics of the high speed train entering into a tunnel [J]. Mechanics Research Communications, 2003, 30(4) : 287-296.
  • 8中铁西南科学研究院有限公司.客运专线隧道空气动力学及合理断面形式研究分析报告之2-列车内、外的空气压力传递[R].成都:中铁西南科学研究院有限公司,2007.
  • 9中国铁道科学研究院.京沪高速铁路综合试验研究分报告之八:高速铁路气动效应试验研究[R].北京:中国铁道科学研究院,2011.
  • 10OZAWA S, MAEDA T, MATSUMURA T, et al. On the Aerodynamics and Ventilation of Vehicle Tunnels [C]// Haerter A. Proceeding of 7th Symp. Amsterdam:Elsevier Science Publishers Ltd. ,1991: 253-256.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部