期刊文献+

基于关联分析的数据指标应用研究

Research on application of data indicators based on correlation analysis
下载PDF
导出
摘要 在数字化建设过程中,数据中台的建设需要构建公司级和专业级的指标体系,以落地规范化的内容服务能力。随着业务场景分析的深入,传统的数据分析已经难以处理变量多、层次复杂的数据,并且缺乏对数据间关联关系的深刻理解,难以挖掘数据中蕴含的有价值信息。文章主要介绍了指标影响因子拆分进行指标关联分析研究的背景和研究意义,同时通过引入线损率指标因子关联规则的应用,验证了关联分析的有效性。 In the process of digital construction,the construction of a data center requires the establishment of a company level and professional level indicator system to implement standardized content service capabilities.With the deepening of business scenario analysis,traditional data analysis has become difficult to handle data with multiple variables and complex levels,and lacks a deep understanding of the relationships between data,making it difficult to mine valuable information contained in the data.The article mainly introduces the background and research significance of conducting indicator correlation analysis by splitting the influencing factors of indicators.At the same time,the effectiveness of correlation analysis is verified by introducing the application of correlation rules for line loss rate indicator factors.
作者 冯涛 许轲 李季 朱春华 刘德华 孙金德 FENG Tao;XU Ke;LI Ji;ZHU Chunhua;LIU Dehua;SUN Jinde(Beijing Guodiantong Network Technology Co.,Ltd.,Beijing 100000,China)
出处 《计算机应用文摘》 2024年第10期62-64,67,共4页 Chinese Journal of Computer Application
关键词 关联规则 指标关联分析 多指标关联 关联指标应用 association rules indicator correlation analysis multi indicator correlation application of related indicators
  • 相关文献

参考文献3

二级参考文献28

  • 1宋余庆 朱玉全 孙志辉 陈耿.基于FP—Tree的最大频繁项集挖掘及其更新算法.软件学报,2003,14(9):1586—1592[J].http://wwwjos.org.cn/1000-9825/14/1586.htm,:.
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. on VLDB. 1994. 487-499.http://www.almaden.ibm.conVcs/people/srikant/papers/vldb94.pdf.
  • 3Bayardo R. Efficiently mining long patterns from databases. In: Haas LM, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 85-93.
  • 4Burdick D, Calimlim M, Gehrke J. Mafia: A maximal frequent itemset algorithm for transactional databases. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 443-452. http://www.cs.cornell.edu/boom/2001 sp/yiu/mafia-camera.pdf.
  • 5Gouda K, Zaki MJ. Efficiently mining maximal frequent itemsets. In: Proc. of the 1st IEEE Int'l Conf. on Data Mining. 2001.163-170. http ://www.cs .tau. ac .il/-fiat/dmsem03/E fficient%20Mining%20Maxmal%20Frequent%20Itemsets%20-%202001 .pdf.
  • 6Wang H, Li QH. An improved maximal frequent itemset algorithm. In: Wang GY, eds. Proc of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, the 9th Int'l Conf (RSFDGrC 2003). LNCS 2639, Heidelberg: Springer-Verlag, 2003. 484-490.
  • 7Zhou QH, Wesley C, Lu BJ. SmartMiner: A depth 1st algorithm guided by tail information for mining maximal frequent itemsets.In: Proc of the IEEE Int'l Conf on Data Mining (ICDM2002). 2002. 570-577. http://www.serviceware.com/pdffiles/datasheets/ServiceWare-Smartminer-Datasheet.pdf.
  • 8Grahne G, Zhu JF. High performance mining of maximal frequent itemsets. In: Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining (HPDM 2003). 2003. 135-143. http://www.cs.concordia.ca/db/dbdm/hpdm03.pdf.
  • 9Agarwal RC, Aggarwal CC, Prasad VVV. Depth 1 st generation of long patterns. In: Proc. of the 6th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. 2000. 108-118. http://www.cs.tau.ac.il/-fiat/dmsem03/Depth%20First%20Generation%20of%20Long%20Patterns%20-%202000.pdf.
  • 10Wang H, Xiao ZJ, Zhang H J, Jiang SY. Parallel algorithm for mining maximal frequent patterns. In: Zhou XM, ed. Advanced Parallel Processing Technologies (APPT 2003). LNCS 2834, Heidelberg: Springer-Verlag, 2003. 241-248.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部