摘要
针对热轧带钢表面缺陷检测中检测精度不高、卷积特征对尺度敏感的问题,设计了高效的特征提取模块(FEM)和增强的多尺度特征模块(MFM),并提出了一种基于深度学习的轻量化的热轧带钢表面缺陷检测方法,即Better Lightweight YOLO(BL-YOLO)。实验结果表明,该缺陷检测网络在性能和消耗之间达到了很好的平衡,以61.9 fps达到了80.1的mAP。
Aiming at the problems of low detection accuracy and scale sensitivity of convolutional features in hot-rolled strip surface defect detection,this paper designs an efficient feature extraction module(FEM) and an enhanced multi-scale feature module(MFM),and proposes a deep learning-based lightweight hot-rolled strip surface defect detection method,Better Lightweight YOLO(BL-YOLO).Experimental results show that this defect detection network achieves a good balance between performance and consumption,achieving a mAP of 80.1 with 61.9 fps.
出处
《工业控制计算机》
2024年第5期88-90,共3页
Industrial Control Computer