摘要
随着城市化进程的不断加速,城市生活污水排放量急剧增加,因此提出城市生活污水污染物排放浓度监测方法。对采集到的城市生活污水污染物排放数据展开处理,建立BP神经网络模型识别不同类型的城市生活污水污染物,判断监测设备的启停状态,完成实时监测。选取石家庄作为研究对象,实验结果表明,所提方法可以精准且实时监测城市生活污水污染物排放浓度变化规律。由此证明,该方法可以为城市污水治理工作提供科学依据,为实现环境保护和可持续发展作出积极贡献。
With the continuous acceleration of urbanization,the discharge of urban domestic sewage has increased sharply,so the monitoring method of pollutant discharge concentration of urban domestic sewage is put forward.The collected discharge data of urban domestic sewage pollutants are processed,and the BP neural network model is established to identify different types of urban domestic sewage pollutants,judge the start-stop state of monitoring equipment,and complete real-time monitoring.Taking Shijiazhuang as the research object,the experimental results show that the proposed method can accurately and real-time monitor the variation law of pollutant emission concentration of urban domestic sewage.It is proved that this method can provide scientific basis for urban sewage treatment and make positive contributions to environmental protection and sustainable development.
作者
张帆
Zhang Fan(Hebei green morning environmental testing technology service Co.,LTD,Xingtai 054004,China)
出处
《环境科学与管理》
CAS
2024年第5期128-132,共5页
Environmental Science and Management
关键词
城市生活污水
污染物排放
浓度监测
BP神经网络
Urban domestic sewage
pollutant emissions
concentration monitoring
BP neural network