摘要
为了解决现有技术中电能异常数据信息化分析方法计算效率低、检测精度差等问题,设计了一种新型的电能异常数据分析系统,该系统基于局部矩阵重构(Local Matrix Reconstruction,LMR)实现异常电能数据检测,通过使用5个日负荷特征代替高维日负荷曲线来表征功耗模式。结合主成分分析(Principal Component Analysis,PCA)计算局部范围内的加权重构误差,最后将每个样本的重构误差与其相邻样本进行比较,以计算局部异常值分数。实验结果表明,该系统处理异常电能数据精度高,2 TB测试数据时误差率仅有4.2%。该研究的方法大大提高了异常数据信息化分析能力。
In order to solve the problems of low calculation efficiency and insufficient detection accuracy of information analysis method of electricity data anomaly in the prior art,a new type of abnormal electricity data analysis system is designed.The system relies on local matrix reconstruction(LMR)to realize abnormal electric energy data detection,and characterizes the power consumption mode by using 5 daily load characteristics instead of high-dimensional daily load curves.Principal component analysis(PCA)is combined to calculate the weighted reconstruction error in the local range,and finally the reconstruction error of each sample is compared with its neighboring samples to calculate the local outlier score.The experimental results show that the system has high accuracy in processing abnormal electricity data with the error rate of only 4.2%upon applying 2TB test data.The proposed method greatly improves the ability of information analysis of abnormal data.
作者
马春生
MA Chunsheng(Nanjing Softcore Co.,Ltd.,Nanjing 210012,China)
出处
《电工技术》
2024年第8期144-147,共4页
Electric Engineering
关键词
智能制造业
异常电能数据
局部矩阵重构
主成分分析
智能电能表
intelligent manufacturing
abnormal electricity data
local matrix reconstruction
principal component analysis
intelligent electric energy meter