摘要
研究一类离散时间非齐次Markovian跳变奇异模糊系统的有限时间有界问题。在所有顶点已知的凸有界域内考虑时变的转移概率。首先,构造随机李雅普诺夫函数,引入矩阵变量给出奇异随机系统有限时间有界且具有H∞性能的充分条件,其中矩阵变量的结构不受限制,降低了保守性;其次,利用投影引理给出满足H∞性能的状态反馈控制器存在的线性矩阵不等式条件;最后,所提方法的可行性通过算例仿真得以验证。
The finite-time boundedness problem is investigated for discrete-time nonhomogeneous Markovian jump IT2 fuzzy systems.The time-varying transition probability is considered in the convex bounded domain with all vertices known.Firstly,by considering a stochastic Lyapunov function,the sufficient conditions for the finite time boundedness and H∞performance of singular stochastic systems are given by introducing specific matrix variables.Secondly,by using the projection lemma,the linear matrix inequality conditions for the existence of state feedback controllers satisfying the H∞performance level are given.Finally,an example is given to verify the effectiveness of the proposed theory.
作者
刘美
周绍生
LIU Mei;ZHOU Shaosheng(School of Sciences,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China;School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2024年第2期43-50,共8页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(62073109)。