期刊文献+

结合多尺度特征融合和注意力机制的肺腺癌病理图像分类胶囊网络

A Capsule Network Combining Multi-Scale Feature Fusion and Attention Mechanism for Lung Adenocarcinoma Classification Task
下载PDF
导出
摘要 病理学家通过分析肺腺癌低级别组织和癌旁组织来确定病灶切除范围,然而,两者间的细胞形态差异较小,分析时依赖病理学家的主观经验,耗时且易误诊.故提出一种结合多尺度特征融合和通道自注意力的胶囊网络(Multi-Scale Feature Fusion with Self-Channel Attention for Capsule Network, MSCNet),用于帮助医生高效诊断疾病,为患者提供更好的治疗方案.首先,设计了多尺度特征融合模块来提升胶囊网络以捕捉同源图像不同尺度间的语义信息,试图减少模型计算量以提高处理速度及分类准确性.其次,通道自注意力(Self-Channel Attention, SCA)模块作为MSCNet的另一重要组件,可以寻找到更具代表性的特征,辅助识别组织病理学图像中的细微特征,降低误诊风险.实验结果表明,在肺腺癌低级别组织与癌旁组织的二分类任务中,MSCNet实现了99.34%的分类准确率、97.65%的F1-Score值和97.57%的精确度. Pathologists determine the extent of lesion resection by analyzing low-grade and paracancerous tissues of lung adenocarcinoma;however,the cellular morphology differences between the two are small,and the analysis relies on the pathologist’s subjective experience,which is time-consuming and prone to misdiagnosis.Therefore,this study proposes a capsule network(Multi-Scale Feature Fusion with Self-Channel Attention for Capsule Net-work,MSCNet)that combines multi-scale feature fusion and attention mechanisms for helping physicians efficiently diagnose diseases and provide better treatment options for patients.Specifically,wefirst design a multi-scale fea-ture fusion module to enhance the capsule network to capture semantic information between different scales of homologous images in an attempt to reduce the amount of model computation in order to improve processing speed and classification accuracy.Second,the self-channel attention(SCA)module,as another important com-ponent of MSCNet,canfind more representative features to assist in identifying subtle features in histopathology images and reduce the risk of misdiagnosis.Experimental results show that MSCNet achieves 99.34%classification accuracy,97.65%F1-Score value,and 97.57%precision in the task of binary classification of low-grade tissues and paracancerous tissues of lung adenocarcinoma.
作者 李思雨 高静 王云玲 帕力旦·吐尔逊 马玉花 LI Siyu;GAO Jing;WANG Yuning;PALIDAN Tuerxun;MA Yuhua(School of Software,Xinjiang University,Urumqi Xinjiang 830091,China;Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information,Karamay Xinjiang 834099,China;Xinjiang Clinical Research Center for Precision Medicine of Digestive System Tumor,Karamay Xinjiang 834099,China;Department of Pathology,Karamay Central Hospital,Karamay Xinjiang 834099,China;The Radiology Center,The First Affiliated Hospital of Xinjiang Medical University,Urumqi Xinjiang 830011,China;College of Computer Science and Technology,Xinjiang Normal University,Urumqi Xinjiang 830054,China)
出处 《新疆大学学报(自然科学版中英文)》 CAS 2024年第3期319-328,共10页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 中央引导地方科技发展专项“新疆地区缺血性脑卒中风险筛查及多模态影像人工智能研究服务平台建设”(ZYYD2023D02) 新疆维吾尔自治区自然科学基金面上项目“极光激酶A抑制剂(MLN8237)逆转EGFR-TKI耐药的分子机制研究”(2021D01A24) 新疆维吾尔自治区自然科学基金地州科学基金“基于振动光谱结合多变量分析的肺癌早期诊断模型的研究”(2021D01F35) 新疆维吾尔自治区科技支疆项目“基于Prophet-ARMA(预测-自回归滑动平均模型)的医院门诊就诊量预测方法与管理对策研究”(2021E02078)。
关键词 肺腺癌 多尺度特征融合 注意力机制 胶囊网络 lung adenocarcinoma multi-scale feature fusion attention mechanism capsule network
  • 相关文献

参考文献3

二级参考文献16

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部