期刊文献+

基于深度学习的排污口污染物浓度预测研究

Predicting concentrations of water contaminates from sewage outlet based on deep learning algorithms
原文传递
导出
摘要 入河排污口是污染物进入生态环境的最后一道关口,预防超标排放是改善流域生态环境质量的基础.为实现排口超标排放事前预警,本研究以长江泰州段两类典型排口(污水处理设施排口和工业企业清净下水排口)为例,利用排口污染物监测数据与气象数据,基于长短期记忆神经网络(LSTM)、门控循环单元(GRU)、卷积循环神经网络(CRNN)等深度学习算法构建多污染因子(总氮、氨氮、COD、总磷)浓度预测模型,并结合SHAP分析结果识别影响排口水质预测的重要因素.结果表明:(1)单层与双层GRU模型在排污口未来6 h污染物浓度预测中表现较好,R^(2)可达0.67~0.81;(2)自相关变量的累积重要性绝对值占比超80%,对排口污染物浓度预测的影响显著大于其他输入变量.该方法有潜力拓展应用至其它排污口类型及其它污染因子的浓度预测,为排口污染预警和全链条管理提供技术支撑. The sewage outlet is the final gate before pollutants entering the ecological environment.To prevent water pollution and achieve early warning of emissions exceeding the standard,it is necessary to develop models to predict concentrations of water contaminates from sewage outlet.This study took two typical types of sewage outlets in the Taizhou section of the Yangtze River as cases and developed a multi-factors model to predict concentrations of water contaminates from these two sewage outlets based on three deep learning algorithms,including long short-term memory neural network (LSTM),gated recycling unit (GRU),and convolutional recurrent neural network (CRNN),using water contaminate monitoring data and meteorological data as input features.Then the importance of different input features was analyzed based on the method of Shapley Additive Explanation.Results showed that:(1)Both single-layer and double-layer GRU models performed well in predicting pollutant concentrations for the next6 hours,with R^(2) reaching 0.67~0.81;(2)The importance of autocorrelated variables,significantly higher than other input variables,accounted for more than 80%among all variables.This method also shows high potential to be applied to other types of sewage outlets and pollutant factors,thereby supporting early warning of pollution from sewage outlets.
作者 叶蕾 耿敬华 方文 毕军 YE Lei;GENG Jinghua;FANG Wen;BI Jun(State Key Lab of Pollution Control and Resources Reuse,School of the Environment,Nanjing University,Nanjing 210023;Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science&Technology,Nanjing 210044)
出处 《环境科学学报》 CAS CSCD 北大核心 2024年第4期429-439,共11页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.71921003,52270199,72234003)。
关键词 入河排污口 污染物浓度预测 深度学习 变量重要性分析 sewage outlet predicting concentrations of water contaminates deep learning algorithms importance interpretation of variables
  • 相关文献

参考文献6

二级参考文献79

  • 1姜永生.认真贯彻落实入河排污口设置审核管理新要求[J].中国环境监察,2022(6):47-48. 被引量:3
  • 2孙红,黎铨祺,赵娜.基于双层树状支持向量机的观点挖掘与倾向分析[J].智能计算机与应用,2021,11(3):44-47. 被引量:3
  • 3王琦,操晓春.中国计算机学会通讯[J].2015,P60-62.
  • 4WarrenS McCulloch and Walter Pitts. A logical calculus of the ideas immanentin nervous activity. The bulletin of mathematical biophysics, 1943,5 (4) :115 -133.
  • 5Hopfield J J. Neural Networks and Physical Sys- tems with Emergent Collective Computational Abil- ities, Proc Natl Aead Sci. USA, 1982, (79) : 2254 - 2558.
  • 6E Rumelhart, G E Hinton, R J Williams. Learn- ng internal representations by error propagation. ature , 1986,323 (99) :533 - 536.
  • 7http://deepleaming, stanford, edu/wiki/index. php/UFLDL_Tutorial.
  • 8http://blog, csdn. net/datoubo/article/details/ 8577366.
  • 9Geoffery E Hinton, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006,313 (5786) :504 - 7.
  • 10http://www, ccf. org. cn/sites/ccf/xhdtnry, jsp? contentId = 2873667830199.

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部