期刊文献+

3D printed modular Bouligand dissipative structures with adjustable mechanical properties for gradient energy absorbing

原文传递
导出
摘要 Three-dimensional(3D)printing allows for the creation of complex,layered structures with precise micro and macro architectures that are not achievable through traditional methods.By designing 3D structures with geometric precision,it is possible to achieve selective regulation of mechanical properties,enabling efficient dissipation of mechanical energy.In this study,a series of modular samples inspired by the Bouligand structure were designed and produced using a direct ink writing system,along with a classical printable polydimethylsiloxane ink.By altering the angles of filaments in adjacent layers(from 30◦to 90◦)and the filament spacing during printing(from 0.8 mm to 2.4 mm),the mechanical properties of these modular samples can be adjusted.Compression mechanical testing revealed that the 3D printed modular Bouligand structures exhibit stress-strain responses that enable multiple adjustments of the elastic modulus from 0.06 MPa to over 0.8 MPa.The mechanical properties were adjusted more than 10 times in printed samples prepared using uniform materials.The gradient control mechanism of mechanical properties during this process was analyzed using finite element analysis.Finally,3D printed customized modular Bouligand structures can be assembled to create an array with Bouligand structures displaying various orientations and interlayer details tailored to specific requirements.By decomposing the original Bouligand structure and then assembling the modular samples into a specialized array,this research aims to provide parameters for achieving gradient energy absorption structures through modular 3D printing.
出处 《Materials Futures》 2024年第2期104-116,共13页 材料展望(英文)
基金 National Key Research and Development Program of China(2022YFB4600102) the strategic priority research program of the Chinese Academy of Sciences(XDB0470000) Western Young Scholars Foundations of the Chinese Academy of Sciences,the National Natural Science Foundation of China(52175201,52108410) Project ZR2023ME061 supported by Shandong Provincial Natural Science Foundation.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部