期刊文献+

TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究

Influence of the Offset Distance between Droplet and Molten Pool on the Molten Pool Morphology in TIG-assisted Droplet Deposition Manufacturing
原文传递
导出
摘要 针对传统d属熔滴微喷沉积成形中气孔、冷叠等冶金缺陷难抑制的问题,提出一种TIG电弧辅助熔滴沉积增材制造新方法。基于计算流体力学方法,建立铝合金TIG电弧辅助熔滴沉积增材制造过程三维瞬态熔池行为数值模型,对比研究了3组不同熔滴偏距下的熔池行为,通过与堆积层特征尺寸(层高、层宽、熔深)实测值相比较,验证所建熔池行为数值模型的有效性,澄清了单层单道堆积成形中熔滴偏距对熔池热流场和堆积层形貌的影响规律。结果表明:随着熔滴偏距的增加,熔滴与TIG电弧熔池一侧基板表面的接触面积增加,熔池与基板之间的散热效率得到提高,熔池凝固前沿的对称性被打破,进而导致熔滴冲击诱导的熔池热流场与堆积层形貌呈现明显的非对称特征。研究结论可为TIG电弧辅助熔滴沉积增材制造增材技术的工艺参数调控提供理论支撑和依据。 To eliminate metallurgical defects such as porosity and cold lap in the formed parts fabricated by metal droplets deposition manufacturing technology,a novel droplet-based additive manufacturing method,called TIG-assisted droplet deposition manufacturing,for producing three-dimensional metal components is presented.A numerical model based on the computational fluid dynamics(CFD)method is developed to comparatively investigate the effect of the offset distance between the impacting point of droplet and the longitudinal plane of molten pool on the deposition morphology and the impact-induced molten pool behaviors.The numerical model is validated with corresponding experiments for three different lateral offset distances.The results indicated that as the lateral offset distance increases,the amount of liquid metal that contacts with the cooler substrate or the asymmetric pre-solidified bead increased,which leads to exposing more contact area for heat dissipation.Consequently,the symmetry of solidification front morphologies will be broken,an obvious increase of the asymmetry in the thermal-flow fields within the droplet impact-induced molten pool and deposition geometry was observed.The results of this paper can provide theoretical support and basis for the process parameters’controlling and adjusting of TIG-assisted droplet deposition manufacturing.
作者 杜军 王谦元 何冀淼 张永恒 魏正英 DU Jun;WANG Qianyuan;HE Jimiao;ZHANG Yongheng;WEI Zhengying(School of Materials and New Energy,Ningxia University,Yinchuan 750021;The State Key Laboratory for Manufacturing Systems Engineering,Xi’an Jiaotong University,Xi’an 710049)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2024年第5期219-230,共12页 Journal of Mechanical Engineering
基金 国家自然科学基金(51775420) 航空科学基金(20200054070001) 浙江省自然科学基金(LQZ1E010004) 宁波市自然科学基金(202003N4071) 民用航空预研(D020208)资助项目。
关键词 增材制造 TIG电弧 熔滴沉积 熔池行为 堆积层形貌 additive manufacturing TIG welding arc droplet deposition molten pool behavior deposition morphology
  • 相关文献

参考文献2

二级参考文献32

  • 1Lai H,Duh J. Lead-free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying[J]. Journal of Electronic Materials,2003,32 (4): 215-220.
  • 2Xu H,Yuan Z,Lee J,et al. Contour evolution and sliding behavior of molten Sn-Ag-Cu on tilting Cu and Al2O3 substrates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,359(1/2/3): 1-5.
  • 3Allen S,Notis M,Chromik R,et al. Microstructural evolution in lead-free solder alloys. Part II. Directionally solidified Sn-Ag-Cu,Sn-Cu and Sn-Ag[J]. Journal of Materials Research,2004,19(5): 1425-1431.
  • 4Krasovitski B,Marmur A. Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate[J]. Langmuir,2005,21(9): 3881-3885.
  • 5Eustathopoulos N. Dynamics of contact angle phenomenon[J]. Acta Materialia,1998,46(7): 2319-2327.
  • 6Whyman G,Bormashenko E. Oblate spheroid model for calculation of the shape and contact angles of heavy droplets[J]. Journal of Colloid and Interface Science,2009,331(1):174-177.
  • 7Abdelhadi O M,Ladani L. IMC growth of Sn-3.5Ag/Cu system: Combined chemical reaction and diffusion mechanisms[J]. Journal of Alloys and Compounds,2012,537 (5): 87-99.
  • 8Suzuki S,Nakajima A,Tanaka K,et al. Sliding behavior of water droplets online-patterned hydrophobic surfaces[J]. Applied Surface Science,2008,254 (6): 1800-1805.
  • 9He B,Lee J,Patankar N A. Contact angle hysteresis on rough hydrophobic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,248(1/2/3): 101-104.
  • 10Parker A R,Lawrence C R. Water capture by a desert beetle[J]. Nature,2001,414: 33-34.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部