期刊文献+

Insight into the selective separation of CO_(2)from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials:a first-principles study

原文传递
导出
摘要 The composition of biomass pyrolysis gas is complex,and the selective separation of its components is crucial for its further utilization.Metal-incorporated nitrogen-doped materials exhibit enormous potential,whereas the relevant adsorption mechanism is still unclear.Herein,16 metal-incorporated nitrogen-doped carbon materials were designed based on the density functional theory calculation,and the adsorption mechanism of pyrolysis gas components H2,CO,CO_(2),CH_(4),and C2H6 was explored.The results indicate that metal-incorporated nitrogen-doped carbon materials generally have better adsorption effects on CO and CO_(2)than on H_(2),CH_(4),and C_(2)H_(6).Transition metal Mo-and alkaline earth metal Mg-and Ca-incorporated nitrogen-doped carbon materials show the potential to separate CO and CO_(2).The mixed adsorption results of CO_(2)and CO further indicate that when the CO_(2)ratio is significantly higher than that of CO,the saturated adsorption of CO_(2)will precede that of CO.Overall,the three metal-incorporated nitrogen-doped carbon materials can selectively separate CO_(2),and the alkaline earth metal Mg-incorporated nitrogen-doped carbon material has the best performance.This study provides theoretical guidance for the design of carbon capture materials and lays the foundation for the efficient utilization of biomass pyrolysis gas.
出处 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第3期1-12,共12页 化学科学与工程前沿(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.52106241,52276189 and 52006069) Fundamental Research Funds for the Central Universities(Grant Nos.2023JC009 and 2022YQ002).
  • 相关文献

参考文献7

二级参考文献107

  • 1Chunbao Xu,J.-X. Zhu.EFFECTS OF GAS TYPE AND TEMPERATURE ON FINE PARTICLE FLUIDIZATION[J].China Particuology,2006,4(3):114-121. 被引量:6
  • 2Lynd L R, Wyman C E, Gemgross T U. Biocommodity engineering. Biotechnology Progress, 1999, 15:777-793.
  • 3Wyman C E. Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 1999, 24:189- 226.
  • 4Wyman C E, Dale B E, Elander R T, Holtzapple M, Ladisch M R, Lee Y Y. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 2005, 96:1959 -1966.
  • 5Klass D L. Biomass for Renewable Energy, Fuels, and Chemicals. San Diego: Academic Press, 1998.
  • 6Leibbrandt N H, Knoetze J H, Gorgens J F. Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective. Biomass and Bioenergy, 2011, 35:2117-2126.
  • 7Anex R P, Aden A, Kazi F K, Fortman J, Swanson R M, Wright M M, Satrio J A, Brown R C, Dangaard D E, Platon A, Kothandaraman G, Hsu D D, Dutta A. Techno-economic comparison ofbiomass-to- transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 2010, 89(Supplement 1): S29-S35.
  • 8Zhou C H, Xia X, Lin C X, Tong D S, Beltramini J. Catalytic conversion of lignocellulosie biomass to fine chemicals and fuels. Chemical Society Reviews, 2011, 40:5588- 5617.
  • 9Bridgwater A V. IEA Bioenergy 27th Update. Biomass pyrolysis. Biomass and Bioenergy, 2007, 31: Ⅶ-ⅩⅧ.
  • 10Mullen C A, Boateng A A. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy & Fuels, 2008, 22:2104- 2109.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部