期刊文献+

Controlling Tendons to Modulate Stiffness of a Planar-to-Spatial Tendon-Driven Continuum Manipulator Under External Uncertain Forces

原文传递
导出
摘要 Continuum manipulators(CM)are soft and flexible manipulators with large numbers of degrees of freedom and can perform complex tasks in an unstructured environment.However,their deformability and compliance can deviate distal tip under uncertain external interactions.To address this challenge,a novel tension-based control scheme has been proposed to modulate the stiffness of a tendon-driven CM,reducing the tip position errors caused by uncertain external forces.To minimize the tip position error,a virtual spring is positioned between the deviated and the desired tip positions.The proposed algorithm corrects the manipulator deviated tip position,improving tension distribution and stiffness profile,resulting in higher stiffness and better performance.The corresponding task space stiffness and condition numbers are also computed under different cases,indicating the effectiveness of the tension control scheme in modulating the manipulator's stiffness.Experimental validation conducted on an in-house developed prototype confirms the practical feasibility of the proposed approach.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期821-841,共21页 仿生工程学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部