摘要
Highly efficient and stable iron electrodes are of great significant to the development of iron-air battery(IAB).In this paper,iron nanoparticle-encapsulated C–N composite(NanoFe@CN)was synthesized by pyrolysis using polyaniline as the C–N source.Electrochemical performance of the NanoFe@CN in different electrolytes(alkaline,neutral,and quasi-neutral)was investigated via cyclic voltammetry(CV).The IAB was assembled with NanoFe@CN as the anode and IrO_(2)+Pt/C as the cathode.The effects of different discharging/charging current densities and electrolytes on the battery performance were also studied.Neutral K_(2)SO_(4)electrolyte can effectively suppress the passivation of iron electrode,and the battery showed a good cycling stability during 180 charging/discharging cycles.Compared to the pure nano-iron(NanoFe)battery,the NanoFe@CN battery has a more stable cycling stability either in KOH or NH_(4)Cl+KCl electrolyte.
基金
supported by the National Natural Science Foundation of China(Grant Nos.22379042 and 21875062)
the Research and Development Planning Projects in Key Areas of Hunan Province(Grant No.2019GK2034).