期刊文献+

融合传递机理的履带车辆系统级振动状态关联模型研究

Research on the System Level Vibration State Correlation Model for Tracked Vehicles Fusing Transmission Mechanisms
下载PDF
导出
摘要 针对履带车辆的振动预测,提出了一种融合传递机理的履带车辆系统级振动状态关联模型。首先对履带车辆的结构进行分析,明确振动传递路径并提出多层次关联模型架构;然后结合深度学习技术构建关联模型,并通过关键位置激励载荷参数筛选对模型进行优化;最后使用真实车辆振动数据集进行振动状态预测。结果表明,与未融合传递机理的关联模型相比,融合传递机理的履带车辆振动关联模型在6个振动指标的预测精度上均获得提升,证明了融合传递机理的振动预测方法的有效性。 For vibration prediction of tracked vehicles,a system-level vibration state correlation model fusing transmission mechanisms is proposed.Firstly,based on the structure of tracked vehicles,the vibration transmission path is clarified,and a multi-level correlation model architecture is determined.Then,the correlation model is constructed using deep learning approaches and optimized by selecting key position excitation load parameters.Finally,real vehicle vibration dataset is used for vibration state prediction.Compared with the method without fusing transmission mechanisms,the proposed correlation model fusing transmission mechanisms improves the prediction accuracy of six vibration indicators,which verifies the effectiveness of the vibration prediction method fusing transmission mechanism.
作者 邵昊南 李元芾 张会生 Shao Haonan;Li Yuanfu;Zhang Huisheng(Gas Turbine Research Institute,Shanghai Jiaotong University,Shanghai,China,200240)
出处 《传动技术》 2024年第1期3-8,共6页 Drive System Technique
关键词 振动传递 关联模型 深度学习 参数筛选 vibration transmission correlation model deep learning parameter selection
  • 相关文献

参考文献7

二级参考文献75

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部