摘要
为协调多园区综合能源系统各个园区之间的能量交互,多能源子系统之间的能源转换,实现综合能源系统整体优化调度,提出一种利用多智能体深度强化学习算法学习不同园区的负荷特征,并在此基础上进行决策的综合调度模型。该模型将多园区综合能源系统的调度问题转化为马尔科夫决策过程,并利用深度强化学习算法进行求解,避免了对多园区、多能源子系统之间复杂的能量耦合关系进行建模。仿真结果表明,所提方法可以很好地捕捉到不同园区的负荷特性,并利用其中的互补特性协调不同园区之间进行合理的能量交互,可以实现弃风率由16.3%降低至0,并可以使总运行成本降低5445.6元,具有良好的经济效益和环保效益。
In order to coordinate energy interactions among various communities and energy conversions among multi-energy subsystems within the multi-community integrated energy system under uncertain conditions,and achieve overall optimization and scheduling of the comprehensive energy system,this paper proposes a comprehensive scheduling model that utilizes a multi-agent deep reinforcement learning algorithm to learn load characteristics of different communities and make decisions based on this knowledge.In this model,the scheduling problem of the integrated energy system is transformed into a Markov decision process and solved using a data-driven deep reinforcement learning algorithm,which avoids the need for modeling complex energy coupling relationships between multi-communities and multi-energy subsystems.The simulation results show that the proposed method effectively captures the load characteristics of different communities and utilizes their complementary features to coordinate reasonable energy interactions among them.This leads to a reduction in wind curtailment rate from 16.3%to 0%and lowers the overall operating cost by 5445.6 Yuan,demonstrating significant economic and environmental benefits.
作者
李扬
马文捷
卜凡金
杨震
王彬
韩猛
LI Yang;MA Wenjie;BU Fanjin;YANG Zhen;WANG Bin;HAN Meng(School of Electrical Engineering,Northeast Electric Power University,Jilin 132012,Jilin Province,China;State Grid Zibo Power Supply Company,Zibo 255022,Shandong Province,China;State Grid Beijing Electric Power Company,Beijing 100032,China;State Grid Jining Power Supply Company,Jining 272000,Shandong Province,China)
出处
《电力建设》
CSCD
北大核心
2024年第5期59-70,共12页
Electric Power Construction
基金
吉林省自然科学基金项目(YDZJ202101ZYTS149)。
关键词
多智能体深度强化学习
综合能源系统
优化调度
可再生能源消纳
负荷特征学习
多园区能量交互
multi-agent deep reinforcement learning
integrated energy system
optimal scheduling
renewable energy consumption
load characteristic learning
energy interaction among communities