期刊文献+

Integral Operators Between Fock Spaces

原文传递
导出
摘要 In this paper,the authors study the integral operator■induced by a kernel functionφ(z,·)∈F_α~∞between Fock spaces.For 1≤p≤∞,they prove that S_φ:F_α^(1)→F_α^(p)is bounded if and only if■where k_(a)is the normalized reproducing kernel of F_α^(2);and,S_φ:F_α^(1)→F_α^(p)is compact if and only if■When 1<q≤∞,it is also proved that the condition(?)is not sufficient for boundedness of S_φ:F_α^(q)→F_α^(p).In the particular case■with ■∈F^(2)_α,for 1≤q<p<∞,they show that S_φ:F^(p)_α→F^(q)_αis bounded if and only if■;for 1<p≤q<∞,they give sufficient conditions for the boundedness or compactness of the operator S^(q)_φ:F^(p)_α→F_α.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2024年第2期265-278,共14页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.11971340)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部