期刊文献+

MXene-Based Elastomer Mimetic StretchableSensors: Design, Properties, and Applications 被引量:1

下载PDF
导出
摘要 Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期295-342,共48页 纳微快报(英文版)
基金 The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
  • 相关文献

参考文献16

二级参考文献109

  • 1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004).
  • 2A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007).
  • 3S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40(5), 2644 (2011).
  • 4V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011).
  • 5T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57(7), 1061 (2012).
  • 6Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale 5(11), 4541 (2013).
  • 7Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013).
  • 8M. Naguib and Y, Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48(1), 128 (2015).
  • 9Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014).
  • 10M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AIC2, Adv. Mater. 23(37), 4248 (2011).

共引文献165

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部