摘要
基于深度强化学习中深度策略性梯度(DDPG)算法,提出加权采样DDPG算法,在仿真环境下,为避免算法探索效率低的问题,将视觉目标检测与加权采样DDPG算法相结合,让目标检测算法获取目标物体所在区域作为算法的先验,使算法探索阶段能够获得更多有效的学习样本,进而提高算法的学习速率和抓取精度。
Based on the deep reinforcement learning algorithm known as deep deterministic policy gradient(DDPG),this study proposes a Weighted Sampling DDPG algorithm for collaborative robot grasping.In a simulated environment,to address the issue of low algorithm exploration efficiency,visual target detection is combined with the weighted sampling DDPG algorithm.This allows the target detection algorithm to obtain the region where the target object is located as prior information for the algorithm,enabling the algorithm's exploration phase to acquire more effective learning samples.and thus improve the learning rate and grasping accuracy of the algorithm.
作者
周杰
Zhou Jie(Yan Lin Automation Technology Co.,Ltd.,Shanghai,201822,China)
出处
《机械设计与制造工程》
2024年第5期67-72,共6页
Machine Design and Manufacturing Engineering
关键词
深度强化学习
加权采样
视觉检测
推-抓结合
奖励函数
deep reinforcement learning
weighted sampling
visual detection
push-grasp combination
reward functions