期刊文献+

智能驾驶车辆轨迹预测方法综述

A Survey of Vehicle Trajectory Prediction Methods for Intelligent Driving
下载PDF
导出
摘要 针对目前车辆轨迹预测难点,对车辆轨迹预测方法的分类和研究现状进行综述。根据模型实现预测时域的不同,将现有算法分为短时域和长时域的车辆轨迹预测方法;介绍短时域的基于物理模型和传统机器学习预测方法的基本概念及研究现状,总结对比长时域的基于深度学习、神经网络和基于车辆驾驶行为意图识别的预测方法。分析结果表明:长时域方法能够解决车辆轨迹预测难点问题,保证智能车辆高效、安全驾驶。 In view of the difficulties of vehicle trajectory prediction,the classification and research status of vehicle trajectory prediction methods are reviewed.According to the different prediction time domain of model implementation,the existing algorithms are divided into short time domain and long time domain vehicle trajectory prediction methods;the basic concepts and research status of short time domain prediction methods based on physical model and traditional machine learning are introduced,and the long time domain prediction methods based on deep learning,neural network and vehicle driving behavior intention recognition are summarized and compared.The analysis results show that the long time domain method can solve the difficult problem of vehicle trajectory prediction and ensure the efficient and safe driving of intelligent vehicles.
作者 龙皓明 薛振锋 陈卓 刘勇 Long Haoming;Xue Zhenfeng;Chen Zhuo;Liu Yong(School of Information Engineering,Huzhou University,Huzhou 313000,China;Huzhou Institute of Zhejiang University,Huzhou 313002,China;Institute of System Engineering,China State Shipbuilding Corporation Limited,Beijing 100094,China)
出处 《兵工自动化》 北大核心 2024年第5期43-52,共10页 Ordnance Industry Automation
关键词 智能驾驶 车辆轨迹预测 深度学习 意图识别 intelligent driving vehicle trajectory prediction deep learning intention recognition
  • 相关文献

参考文献8

二级参考文献33

  • 1王兴伟,原常青,黄敏.一种基于模糊决策树的运动预测机制[J].计算机科学,2005,32(9):176-179. 被引量:5
  • 2刘伟铭,李蓉.ETC系统缴费方式随机选择模型[J].中国公路学报,2006,19(5):77-82. 被引量:15
  • 3Wolfson O,Xu Bo,Chamberlain S,et al.Moving object databases Issues and solutions[C] ∥The 10th Int'l Conf.on Science and Statistical Database Management.Capri,Italy,1998.
  • 4Wolfson O,Chamberlain S,Dao S,et al.Location management in moving objects databases[C] ∥The Second Int'l Workshop on Satel2 lite2Based Information Services (WOSBIS'97).Budapest,Hun2 gary,1997.
  • 5Chon H,Agrawal D,Abbadi A E.Storage and Retrieval of Moving Objects[C] ∥Proc.of the Intl.Conf.on Mobile Data Mana-gement.2001.
  • 6Saltenis S,Jensen C S,Leutenegger S T,et al.Indexing the Positions of Continuously Moving Objects[C] ∥Proc.of the 2000 ACM SIGMOD Intl.Conf.on Management of Data.2000:331-342.
  • 7Jeung H,Liu Q,Shen H T,et al.A hybrid prediction model for moving objects[C] ∥Proc.of the 24th Int'l Conf.on Data Engineering.USA:IEEE,2008:70-79.
  • 8Mamoulis N,Cao H,Kollios G,et al.Mining,Indexing,and Querying Historical Spatiotemporal Data[C] ∥Proc.of the 10th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004:236-245.
  • 9Tao Y,Faloutsos C,Papadias D,et al.Prediction and indexing of moving objects with unknown motion patterns[C] ∥Proc.of the 2004 ACM SIGMOD Int'l Conf.on Management of Data.New York:ACM,2004:611-622.
  • 10Aggareal C C,Agrawal D.On nearest neighbor indexing of nonlinear trajectories[C] ∥Proc.of the 22th ACM SIGMOD-SIGACT-SIGART Symp.on Principles of Database Systems.New York:ACM,2003:252-259.

共引文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部