期刊文献+

基于CYCBD和参数自适应DMD的滚动轴承微弱故障诊断

Weak fault diagnosis for rolling bearings based on CYCBD and parameter-adaptive DMD
下载PDF
导出
摘要 在旋转机械故障诊断中,传感器采集到的滚动轴承振动信号容易受到多个激励源的耦合影响,特别是微弱故障特征往往淹没在背景噪声中,给故障诊断带来挑战。为了抑制无关激励源并增强故障特征,本文提出一种基于最大二阶循环平稳盲解卷积(CYCBD)和参数自适应动态模式分解(DMD)的滚动轴承微弱故障诊断方法。首先根据包络谐波乘积谱(EHPS)估计CYCBD算法的关键参数循环频率α,将原始信号经CYCBD处理使故障特征得到增强;然后将CYCBD处理后的信号通过参数自适应DMD进一步消除残余噪声,其中DMD的最优截断秩参数r通过遗传算法自适应确定;最后通过包络谱分析来提取故障特征频率及倍频。仿真和试验结果证明了本方法的有效性。 In fault diagnosis of rotating machinery,the rolling bearing vibration signals acquired by sensors are susceptible to coupling effects of multiple excitation sources.Especially,the weak fault features are often submerged in background noise,which presents challenges to the diagnosis.To suppress irrelevant excitation sources and enhance fault features,this paper proposed a weak fault diagnosis method for rolling bearings based on maximum second-order cyclostationary blind deconvolution(CYCBD)and parameter-adaptive dynamic mode decomposition(DMD).Firstly,the key parameterαcalled cyclic frequency of CYCBD algorithm was estimated via envelope harmonic product spectrum(EHPS),and the original signal was processed through CYCBD to enhance the fault features.Then,the treated signal was further denoised by using parameter-adaptive DMD,where the optimal truncation rank parameter r in the DMD procedure was adaptively determined by genetic algorithm.Finally,envelope spectral analysis was performed to extract fault feature frequency and its harmonic frequencies.Both simulation and experimental results demonstrate the effectiveness of this method.
作者 夏天赐 党章 吕勇 余震 XIA Tianci;DANG Zhang;LYU Yong;YU Zhen(Key Laboratory of Metallurgical Equipment and Control of Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《武汉科技大学学报》 CAS 北大核心 2024年第3期200-211,共12页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金面上项目(51875416) 湖北省自然科学基金创新群体项目(2020CFA033) 湖北省教育厅科学研究计划指导项目(B2022022).
关键词 滚动轴承 故障诊断 最大二阶循环平稳盲解卷积 动态模式分解 遗传算法 参数自适应 rolling bearing fault diagnosis CYCBD DMD genetic algorithm parameter-adaptative
  • 相关文献

参考文献14

二级参考文献88

共引文献289

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部