期刊文献+

基于改进粒子群区间二型模糊神经网络的MPPT控制研究

MPPT CONTROL BASED ON IMPROVED PARTICLE SWARM INTERVAL
下载PDF
导出
摘要 针对太阳能发电单元最大功率点控制(MPPT)在复杂工况条件下存在的振荡、跟踪耗时长、精度较低的问题,提出一种基于改进区间二型模糊神经网络的预测控制模型。首先将减法聚类与区间二型模糊均值聚类算法相结合,辨识模型前件模糊规则层结构,计算得到聚类中心;其次,基于自导式粒子群算法优化后件权重层权值参数,进而提升网络全局寻优能力;最后,通过与TS模糊神经网络模型、基于反向传播算法的区间二型模糊神经网络模型进行仿真对比,验证所提模型在不同工况下对最大功率点追踪的快速性与精确性。 In order to solve the problems of maximum power point control,propose a predictive control model based on interval type two fuzzy neural network,such as oscillation,long tracking time and low accuracy under complex operating conditions.Firstly,the Fuzzy rule layer structure of interval type two fuzzy neural network is identified and the cluster center is calculated by combining subtractive clustering and interval two type fuzzy mean clustering algorithm;Secondly,self guided particle swarm optimization is used to optimize the weight layer of the subsequent layer to improve the global optimization capability of the network.Finally,through simulation comparison with TS fuzzy neural network model and interval typeⅡfuzzy neural network model based on back propagation algorithm,the rapidity and accuracy of the proposed model for maximum power point tracking under different working conditions are verified.
作者 李凯 姜新正 Li Kai;Jiang Xinzheng(School of Information and Communication Engineering,Guangdong Vocational College of Post and Telecom,Guangzhou 510630,China;School of Intelligent Manufacturing and Electrical Engineering,Guangzhou Institute of Technology,Guangzhou 510540,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期556-564,共9页 Acta Energiae Solaris Sinica
基金 2022广东省青年创新人才项目(2022KQNCX214)。
关键词 光伏发电 最大功率点跟踪 预测控制 模糊神经网络 模糊聚类 粒子群算法 PV power MPPT predictive control fuzzy neural network fuzzy clustering particle swarm optimization algorithm
  • 相关文献

参考文献14

二级参考文献116

  • 1高虎.“双碳”目标下中国能源转型路径思考[J].国际石油经济,2021,29(3):1-6. 被引量:65
  • 2杨永恒,周克亮.光伏电池建模及MPPT控制策略[J].电工技术学报,2011,26(S1):229-234. 被引量:143
  • 3Mendel J M,John R I B.Type-2 fuzzy sets made si mple[].IEEE Transactions on Fuzzy Systems.2002
  • 4Liang D,Mendel J M.Type-2 fuzzylogic systems theory de-sign[].IEEE Transactions on Fuzzy Systems.2000
  • 5Coupland S,John R.Geometric type-1 andtype-2 fuzzylogicsystems[].IEEE Transactions on Fuzzy Systems.2007
  • 6Karnik N K,Mendel J M,Liang Q.Type-2 fuzzy logic sys-tems[].IEEE Transactions on Fuzzy Systems.1999
  • 7Lucas L A,Centeno T M,Delgado MR.General inferenceand type-2 fuzzy systems:analysis,design and computa-tional aspects[].IEEEInternational Fuzzy Systems Con-ference.2007
  • 8Karnik N K,Mendel J M.Type-2 fuzzy logic systems:type-reduction[].IEEEInternational Conference on SystemsManand Cybernetics.1998
  • 9Liang Q,Mendel J M.Interval type-2 fuzzylogic systems[].IEEE International Conference on Fuzzy Systems.1999
  • 10Liang Q,Mendel J M.Overcoming ti me-varying co-chan-nel interference using type-2 fuzzy adaptive filter[].IEEE Transactions on Circuits Systems-Ⅱ:Analog andDigital Signal Processing.2000

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部