期刊文献+

人工智能驱动的复杂系统研究前沿

Advancements in Artificial Intelligence-Driven Complex Systems Research
下载PDF
导出
摘要 作为一个研究对象涵盖基本物质、生命体和社会的跨学科研究领域,复杂系统的研究有助于增进对自然和社会现象的理解和预测,在解决人类面临的复杂问题中具有重要价值。这一领域的早期研究积累了海量的各类真实复杂系统数据,在此基础上发展数据密集型、人工智能方法驱动的复杂性科学研究新范式,将为复杂系统的描述、预测与知识发现提供一条全新的路径。该文对人工智能驱动的复杂系统研究进行前瞻性的综述,探讨人工智能助力下的复杂系统研究发展前沿,并分析基于人工智能方法的领域代表性工作,最后讨论复杂系统视角下人工智能理论及技术的潜在发展方向。 Spanning across disciplines with research interests in fundamental matter,life forms,and societal dynamics,the study of complex systems plays a pivotal role in deciphering and forecasting natural and social phenomena,thereby confronting intricate problems of human concern.The wealth of diverse real-world complex system data accumulated through early research has paved the way for a novel paradigm in complexity science research,which is intensively data-driven and steered by Artificial Intelligence(AI)methodologies.This innovative approach provides fresh insights into the characterization,forecasting,and knowledge extraction of complex systems.This article offers a visionary review of AI-driven studies in complex systems,highlighting the pioneering developments spearheaded by AI.It further scrutinizes exemplary works in the domain that leverage AI methodologies and concludes by contemplating the prospective evolution of AI theory and techniques under the lens of complex systems.
作者 丁璟韬 徐丰力 孙浩 严钢 胡延庆 李勇 周涛 DING Jingtao;XU Fengli;SUN Hao;YAN Gang;HU Yanqing;LI Yong;ZHOU Tao(Department of Electronic Engineering,Tsinghua University,Beijing 100084,China;Gaolin School of Artificial Intelligence,Renmin University of China,Beijing 100872,China;School of Physical Science and Engineering,Tongji University,Shanghai 200092,China;Shanghai Research Institute for Intelligent Autonomous Systems,Tongji University,Shanghai 200092,China;Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen 518055,China;School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期455-461,共7页 Journal of University of Electronic Science and Technology of China
基金 国家重点研发计划(2022YFC3303102)。
关键词 复杂系统 人工智能 机器学习 数据科学 complex system artificial intelligence machine learning data science
  • 相关文献

参考文献12

二级参考文献191

共引文献2075

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部