期刊文献+

高速公路能见度的时空特征及预测

Study on Spatiotemporal Features and Prediction of Expressway Visibility
下载PDF
导出
摘要 利用开源的历史气象数据,分析湖南省高速公路网能见度的时空变化特征,探究影响地区能见度的气象要素相关性,并构建基于BP神经网络和广义线性混合模型(GLMM)的能见度预测模型,结果表明BP神经网络模型能够更好地利用当前时刻的气象要素数据预测3 h后的高速公路能见度数值。 This paper used open-source historical meteorological data to analyze the temporal and spatial variation characteristics of expressway visibility in Hunan Province,explore the correlation of meteorological elements that affect regional visibility,and build a visibility prediction model based on BP neural network and Generalized Linear Mixed Model(GLMM).The results show that the BP neural network model can better predict the expressway visibility value after 3 hours by using the current meteorological data.
作者 彭文耀 高琼 钟文 叶洛池 PENG Wenyao;GAO Qiong;ZHONG Wen;YE Luochi(Hunan Pingyi Expressway Construction and Development Co.,Ltd.,Yueyang,Hunan 414517,China;Hunan Communications Research Institute Co.,Ltd.,Changsha,Hunan 410015,China)
出处 《黑龙江交通科技》 2024年第5期129-134,共6页 Communications Science and Technology Heilongjiang
基金 湖南省交通科技项目(201817)。
关键词 高速公路能见度 时空特征 BP神经网络 广义线性混合模型 expressway visibility spatiotemporal characteristics BP neural network Generalized Linear Mixed Model
  • 相关文献

参考文献4

二级参考文献58

  • 1曹治强,吴兑,吴晓京.1961~2005年中国大雾天气气候特征[J].气象科技,2008,36(5):556-560. 被引量:42
  • 2苏维瀚 张秋彭 等.北京地区大气能见度与大气污染的关系初探[J].大气科学,1986,10(2):138-143.
  • 3Ndder J A,Wedderburn R W M. Generalized Linear Models [J]. Journal of the Royal Statistical Society, Set. A, 1972(3).
  • 4McCullagh P, Nelder J A. Generalized Linear Models [M]. 2nd ed. New York:Chapman & Hall, 1989.
  • 5Broekmann M J, Wright T S. Statistical Motor Rating: Making Effective Use of Your Data[J]. Journal of the Institute of Actuaries, 1992, 119(3).
  • 6Steven Haberman, ArthUr E Renshaw. Generalized Linear Models and Acturial Science[J]. Journal of the Royal Statistical Society, Series D, 1996, 45(4).
  • 7Duncan Anderson, etc. A Practitioners Guide to Generalized Linear Models[R]. CAS 2004 Discussion Papers: 1-82.
  • 8Breslow N E, Clayton D G. Approximate Inference in Generalized Linear Mixed Models[J]. JASA, 1993, 88(3).
  • 9Wolfinger R, O' Connell M. Generalized Linear Mixed Models: A Pseudo-likelihood Approach[J]. Statistics, Computation Simulation, 1993, 48(3).
  • 10Antonio K, Beirlant J. Actuarial Statistics with Generalized Linear Mixed Models[J]. Insurance: Mathematics and Economics, 2007,40(1).

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部