摘要
利用开源的历史气象数据,分析湖南省高速公路网能见度的时空变化特征,探究影响地区能见度的气象要素相关性,并构建基于BP神经网络和广义线性混合模型(GLMM)的能见度预测模型,结果表明BP神经网络模型能够更好地利用当前时刻的气象要素数据预测3 h后的高速公路能见度数值。
This paper used open-source historical meteorological data to analyze the temporal and spatial variation characteristics of expressway visibility in Hunan Province,explore the correlation of meteorological elements that affect regional visibility,and build a visibility prediction model based on BP neural network and Generalized Linear Mixed Model(GLMM).The results show that the BP neural network model can better predict the expressway visibility value after 3 hours by using the current meteorological data.
作者
彭文耀
高琼
钟文
叶洛池
PENG Wenyao;GAO Qiong;ZHONG Wen;YE Luochi(Hunan Pingyi Expressway Construction and Development Co.,Ltd.,Yueyang,Hunan 414517,China;Hunan Communications Research Institute Co.,Ltd.,Changsha,Hunan 410015,China)
出处
《黑龙江交通科技》
2024年第5期129-134,共6页
Communications Science and Technology Heilongjiang
基金
湖南省交通科技项目(201817)。
关键词
高速公路能见度
时空特征
BP神经网络
广义线性混合模型
expressway visibility
spatiotemporal characteristics
BP neural network
Generalized Linear Mixed Model