期刊文献+

基于改进Kinky Inference的输出调节自适应无拖曳控制

Output regulation adaptive drag-free control with enhanced Kinky Inference
下载PDF
导出
摘要 在空间引力波探测任务中,航天器内部检验质量因存在载荷硬件噪声、环境噪声及微推力器耦合噪声等复杂干扰,影响其无拖曳控制精度,难以实现超净、超稳控制需求。提出一种基于惰性适配Lipschitz常数Kinky Inference (LACKI)的航天器自适应无拖曳控制方法,运用监督学习规则实现先验知识不足、样本数据存在损坏时外界干扰的逼近和抑制,及基于输出调节的模型参考自适应控制(MRAC)方法实现检验质量精确的无拖曳控制。数值仿真验证了无拖曳控制中敏感轴平动和转动自由度的状态响应性能及LACKI规则针对外界干扰的估计效果,通过与常规线性控制方法的对比,验证了所提方法对于提高无拖曳控制精度的有效性。 Achieving ultra-precision and ultra-stable requirements is challenging in the space gravitational wave detection mission due to complex disturbances present in the spacecraft's internal test masses,including load hardware noise,environmental noise,and micro-thrust coupling noise.These disturbances impact the accuracy of drag-free control.In this paper,an adaptive drag-free control method is proposed for spacecraft based on the lazily adapted Lipschitz constant Kinky Inference(LACKI)scheme.When there is not enough empirical data,the LACKI scheme is used to approximate disturbances and suppress non-Lipschitz components.The model reference adaptive control(MRAC),which is based on output regulation,is then used to precise the drag-free control of test masses.Numerical simulation verifies the state response performance of the translational and rotational degrees of freedom of sensitive axes and the estimation effect of the LACKI rule for random discontinuous disturbances,and the accuracy conclusion of the drag-free control loop is obtained.
作者 孙笑云 沈强 吴树范 SUN Xiaoyun;SHEN Qiang;WU Shufan(Shanghai Frontiers Science Center of Gravitational Wave Detection,Shanghai 200240,China;School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1604-1613,共10页 Journal of Beijing University of Aeronautics and Astronautics
基金 科技部重点研发计划“引力波探测”重点专项课题(2020YFC2200800) 国家自然科学基金(62103275) 上海市自然科学基金面上项目(20ZR1427000)。
关键词 监督学习 LIPSCHITZ估计 模型参考自适应控制 无拖曳控制 输出调节 Kinky Inference supervised learning Lipschitz estimation model reference adaptive control drag-free control output regulation Kinky Inference
  • 相关文献

参考文献4

二级参考文献37

  • 1Lange B. The drag-free satellite [ J ]. AIAA Journal, 1964, 2 (9) : 1590 -1606.
  • 2Lange B. The control and use of drag-free satellites [ D ]. USA : Stanford University, 1964.
  • 3Canuto E, Molano A, Massotti L. Drag-free control of the GOCE satellite : noise and observer design [ J ]. IEEE Transactions on Control Systems Technology, 2010,18(2) : 501 -509.
  • 4Muhlfelder B, Adams M, Clarke B, et al. GP-B systematic error determination[J]. Space Science Reviews, 2009, 148: 429- 439.
  • 5Yu Y A, Mitryk S J, Mueller G. Experimental validation of dual/modified dual ann locking for LISA [ J ]. Classical and Quantum Gravity, 2011,28(9): 1 -11.
  • 6Grynagier A, Fichter W, Vitale S. The LISA pathfinder drift mode: implementation solutions for a robust algorithm [ J ]. Classical and Quantum Gravity, 2009, 26 (9) : 1 - 11.
  • 7Mester J, Torii R, Worden P, et al. The STEP mission: principles and baseline design [ J ]. Classical and Quantum Gravity, 2001, 18:2475-2486.
  • 8Canuto E, Massotti L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE [ J ]. Acta Astronautica, 2009, 64 : 325 - 344.
  • 9Canuto E. Drag-free and attitude control for the GOCE satellite[J]. Automatiea, 2008, 44(7): 1766-1780.
  • 10Canuto E, Bona B, Calafiore G, et al. Drag free control for the European satellite GOCE. Part II: digital control[ C]. The 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, Dec. 10 - 13,2002.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部