摘要
在交直流共同激励的工作方式下,磁控电抗器(magnetically controlled reactor,MCR)受直流偏磁的影响,其电磁特性及振动特性会发生极大的变化。为了精确模拟材料在直流偏磁下的磁化及振动特性,首先基于电工钢片的矢量磁致伸缩逆模型和磁特性测量曲线,采用速度可控粒子群优化(velocity-controlled particle swarm optimization,VCPSO)算法提取并优化模型参数,对磁控电抗器铁芯电工钢片的磁滞和磁致伸缩特性进行分析,并对比实验和仿真曲线,验证磁化特性仿真的准确性;其次,结合矢量磁致伸缩逆模型与MCR有限元模型,模拟MCR铁芯在不同直流偏磁下的矢量电磁振动特性,并分析MCR铁芯位移波形的谐波分量。最后,搭建MCR振动测试系统,验证模型仿真的准确性。研究结果可为磁控电抗器铁芯振动的相关研究提供参考。
Under the co-excitation working mode of AC and DC,the magnetization and electromagnetic vibration characteristics of magnetically controlled reactor(MCR)will change greatly under the influence of DC bias.To accurately simulate the magnetization and vibration characteristics of materials under DC bias,this paper is based on the vector magnetostrictive inverse model and the magnetic characteristic measurement curves of the electrical steel sheet,and the velocity-controlled particle swarm optimization(VCPSO)algorithm is used to optimize the model parameters.Moreover,the magnetization and magnetostriction characteristics of the steel sheet are analyzed,and the experimental and simulation curves are compared to verify the accuracy of the magnetization characteristics simulation.Secondly,by combining the vector magnetostriction inverse model with MCR finite element model,the vector electromagnetic vibration characteristics of MCR core under different DC bias are simulated,and the harmonic components of MCR core’s displacement waveform are analyzed.Finally,the MCR vibration test system is built to verify the accuracy of the simulation model.The research results can provide a reference for the related research on the core vibration of MCR.
作者
贲彤
侯露倩
陈龙
张平
闫荣格
BEN Tong;HOU Luqian;CHEN Long;ZHANG Ping;YAN Rongge(College of Electrical Engineering and New Energy,China Three Gorges University,Yichang 443002,China;Hubei Provincial Research Center on Microgrid Engineering Technology,China Three Gorges University,Yichang 443002,China;State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2024年第5期2270-2281,I0040,共13页
High Voltage Engineering
基金
国家自然科学基金(52007102,52207012)
省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学)开放课题基金(EERIKF2021015)。