摘要
超大规模城市轨道交通线网车站调配物资、人员力量一直缺乏科学计算支持。为解决此问题通过选取某汛期日轨道交通线网66座换乘站的进(出)站客流、换乘量、AB线互换客流等指标作为评价标准,采用熵权TOPSIS法在秩和比RSR配重的算法下按照“超高、高、中等、较低、低”5个等级进行分级评价,分别对应3、16、29、16、2座车站。结果表明:(1)换乘站客流热度与所在地区的经济发展情况、职住情况有关;(2)在汛期日或其他特定时期车站资源权益应向经济较发达、高密度住宅地区、线网换乘量大的高热度车站调配;(3)中低热度车站布置的人员、物质可分区设置,并作为支援力量;(4)此方法可用于其他评价标准下的不同决策目的使用。
The deployment of materials and personnel at the stations of the ultra-large scale urban rail transit network has been lacking scientific computing support.In order to solve this problem,the indexes such as passenger flow,transfer volume and AB line interchange flow of 66 transfer stations in a daily rail transit network in flood season are selected as evaluation criteria,and the entropy weight TOPSIS method is used to make a hierarchical evaluation according to five levels of“super high,high,medium,low and low”under the rank sum ratio RSR balance weight algorithm.It corresponds to 3,16,29,16 and 2 stations respectively.The results show that:①the popularity of passenger flow at the interchange station is related to the economic development,employment and housing conditions of the area;②During the flood season or other specific periods,the station resource rights and interests should be deployed to the economically developed,high-density residential areas,and high-heat stations with a large number of line and network transfers;③The personnel and materials arranged at medium-low heat stations can be set up in different areas and serve as support forces;④This method can be used for different decision purposes under other evaluation criteria.
作者
才溢
王丹
林晓飞
刘振华
CAI Yi;WANG Dan;LIN Xiaofei;LIU Zhenghua(Fourth Branch of Operation,Beijing Metro Operation Co.,Ltd.,Beijing 100102,China;Civil Engineering and Agriculture School,Anhui University of Technology,Ma anshan Anhui 243032,China;Post-doctoral Scientific Research Workstation,Ma anshan University,Ma anshan Anhui 243100,China;Power Supply Branch,Beijing Metro Operation Co.,Ltd.,Beijing 100088,China)
出处
《交通工程》
2024年第5期65-74,共10页
Journal of Transportation Engineering
基金
安徽省高校自然科学研究项目“常规大客流下地铁乘客应激反应规律解析”(2023AH051123)
安徽省博士后研究人员科研活动经费资助项目“城市地下轨道交通水灾风险脆弱性评估及防控技术研究”(2022B633)
安徽省住房城乡建设科学技术计划项目“城市地下轨道交通水灾风险脆弱性评估及防控技术研究”(2022YF005)。