摘要
针对全国气象预警信息发布语义类错误,研发一种预警信息纠错模型。通过建立全国气象历史预警信息语料库,训练基于Seq2Seq深度学习方法的纠错模型,并与基于统计方法的规则模型相互验证,形成预警预报信息合法性监测质控平台,构建“智能语义分析+人工验证”的质控业务流程,实现敏感词的快速定位与提醒。预警质控平台业务应用后,信息内容错情率较上一年降低70%,语义纠错效果显著。
An error correction model of early warning information is developed for semantic errors in the release of national meteorological early warning information.By establishing a national meteorological historical warning information corpus,training an error correction model based on Seq2Seq deep learning method,and verifying it with a rule model based on statistical methods,a quality control platform for monitoring the legitimacy of warning and forecasting information was formed.A quality control business process of“intelligent semantic analysis+manual verification”was constructed to achieve rapid localization and reminder of sensitive words.Since the early warning quality control platform began to be applied,the error rate of information content decreased by 70%compared with the previous year,and the semantic error correction effect was remarkable.
作者
侯天宇
张珊
金峰
苑超
陈子煊
HOU Tianyu;ZHANG Shan;JIN Feng;YUAN Chao;CHEN Zixuan(Tianjin Public Emergency Early Warning Information Release Center,Tianjin 300300,China;Meteorological Information Center,Tianjin 300074,China)
出处
《天津科技》
2024年第5期10-12,16,共4页
Tianjin Science & Technology
基金
安全天津、科技惠民与可持续发展实验区建设科技专项“天津市自动化积水监测及内涝风险预警推送技术及系统应用”(17ZXCXSF00060)。
关键词
预警发布
语义分析
Seq2Seq深度学习
预警合法性监测
质控模型
early warning release
semantic analysis
Seq2Seq deep learning
early warning legality monitoring
quality control model