期刊文献+

TC4钛合金绿色湿式切削加工多目标参数优化

Optimization of Multi-objective Parameters for Green Wet Cutting of TC4 Titanium Alloy
下载PDF
导出
摘要 为了研究在绿色湿式切削条件下各铣削参数对TC4钛合金表面粗糙度和机床周边悬浮物颗粒浓度PM2.5的影响规律,设计开展了正交铣削试验,建立了表面粗糙度和悬浮颗粒物浓度PM2.5的回归经验预测模型,在此基础上建立了基于表面粗糙度和悬浮颗粒物浓度PM2.5的多目标优化模型,进而利用NSGA-Ⅱ算法和Pareto最优理论,获得了绿色湿式切削条件下的最优铣削参数选择方案,并通过实际试验证明了该方案的可行性。 In order to study the influence of milling parameters on the surface roughness of TC4 titanium alloy and the concentration of suspended particles PM2.5 around the machine tool under the condition of green wet cutting,this paper designs and carries out orthogonal milling experiments,and establishes the regression empirical prediction model of surface roughness and suspended particulate matter concentration PM2.5.A multi-objective optimization model based on surface roughness and suspended particulate matter concentration PM2.5 is established.Furthermore,the optimal milling parameter selection scheme under the condition of green wet cutting is obtained by using NSGA-Ⅱalgorithm and Pareto optimal theory,and the feasibility of the scheme is proved by practical experiments.
作者 卞向东 赵威 何宁 BIAN Xiangdong;ZHAO Wei;HE Ning(College of Mechanical and Electronic Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《机械工程师》 2024年第6期1-3,7,共4页 Mechanical Engineer
基金 国家重点研发计划重点专项课题(2020YFB2010601)。
关键词 TC4钛合金 表面粗糙度 悬浮颗粒物浓度 多目标优化 TC4 titanium alloy surface roughness concentration of suspended particles multi-objective optimization
  • 相关文献

参考文献5

二级参考文献28

  • 1DEB K,PRATAP A,AGRAWAL S,et al.A Fast and Elitist Multi-Objective Genetic Algorithm:NSGA-Ⅱ[R].KanGAL Report No.200001.India,2000.
  • 2ZITZLER E.Evolutionary Algorithms for Multi-objective Optimization:Methods and Applications[D].A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Technical Sciences.1999.
  • 3SCHAFFER JD.Multiple objective optimization with vector evaluated genetic algorithms[A].In Proceedings of an International Conference on Genetic Algorithms and Their Applications[C].Pittsburgh,PA.,1995.
  • 4ZITZLER E,DEB K,THIELE L.Comparison of Multi-objective Evolutionary Algorithms:Empirical Results[J].Evolutionary Computation,2000,8(2):173-195.
  • 5HAJELA P,LIN C-Y.Genetic Search Strategies in Multi-criterion Optimal Design[J].Optimization,1992,(4):99-107.
  • 6FONSECA CM.Multi-objective Genetic Algorithms with Application to Control Engineering Problems[D].Department of Automatic Control and Systems Engineering.The University of Sheffield,UK,1995.
  • 7HORN J,NAFPLIOTIS N,GOLDBERG DE.A Niched Pareto Genetic Algorithm for Multi-objective Optimization[A].In Proceedings of the First IEEE Conference on Evolutionary Computation[C].Piscataway,NJ.IEEE,1994.82-87.
  • 8DAVID A.VAN VELDHUIZEN,LAMONT GB.Multi-objective Evolutionary Algorithms:Analyzing the State-of-the-Art[J].Evolutionary Computation.2000,8(2):125-147.
  • 9SRINIVAS N,DEB K.Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithm[J].Evolutionary Computation.1995,2(3):221-248.
  • 10刘玉庆,徐九华,丁文锋,吕东升.阻燃钛合金Ti40铣削加工性研究[J].航空制造技术,2013,56(14):48-52. 被引量:9

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部