摘要
为避免复杂海洋背景导致的舰船检测效果差问题,研究基于多特征融合的舰船目标检测方法。以选择性搜索算法获取初始舰船目标潜在区域为基础,结合几何和灰度特征约束从中选取舰船目标潜在区域,分别从舰船目标潜在区域中提取纹理、亮度、轮廓特征,通过自适应融合系数融合舰船目标多特征,以多特征融合结果为支持向量机分类器的输入,实现舰船目标检测。实验结果显示,该方法可有效降低38%以上的初始潜在区域数量;结合多特征的舰船目标描述能力,可实现精准舰船目标检测。
To avoid the problem of poor ship detection performance caused by complex ocean backgrounds,a ship target detection method based on multi feature fusion is studied.Based on the selective search algorithm to obtain the initial potential area of the ship target,combined with geometric and grayscale feature constraints,the potential area of the ship target is selected.Texture,brightness,and contour features are extracted from the potential area of the ship target,and the adaptive fusion coefficient is used to fuse the multiple features of the ship target.The fusion result of the multiple features is used as input for the support vector machine classifier to achieve ship target detection.The experimental results show that this method can effectively reduce the number of initial potential regions by more than 38%;By combining the ability to describe ship targets with multiple features,precise ship target detection can be achieved.
作者
刘玉洁
补冲
LIU Yu-jie;BU Chong(Chengdu College of University of Electronic Science and Technology of China,Chengdu 610054,China)
出处
《舰船科学技术》
北大核心
2024年第9期164-167,共4页
Ship Science and Technology
基金
教育部2019年第二批产学合作协同育人项目(201902005043)
四川省教育厅自然科学一般项目(18ZB0256)
四川省第二批地方普通本科高校应用型示范专业项目(255-256)。
关键词
多特征融合
舰船检测
纹理特征
自适应融合
支持向量机
multi feature fusion
ship inspection
texture features
adaptive fusion
support vector machine