摘要
为满足复杂车辆任务在时延、能耗和计算性能方面的要求,同时减少网络资源的竞争和消耗,设计了一种基于车载边缘计算(VEC)的任务卸载策略,以最小化任务处理延迟和能源消耗之间平衡的长期成本为目标,将车联网中的任务卸载问题建模为马尔可夫决策过程(MDP),提出了在传统双延时深度确定性策略梯度(TD3)的基础上,利用长短期记忆网络(LSTM)来逼近策略函数和价值函数,将系统状态进行归一化处理以加速网络收敛并增强训练稳定性的改进算法(LN-TD3)。仿真结果表明,LN-TD3性能与全部本地计算和全部卸载计算相比提高了两倍以上;收敛速度上与深度确定性策略梯度DDPG、TD3相比提高了约20%。
A task offloading strategy based on Vehicle Edge Computing(VEC)is designed to meet the requirements of complex vehicular tasks in terms of latency,energy consumption,and computational performance,while reducing network resource competition and consumption.The goal is to minimize the long-term cost balancing between task processing latency and energy consumption.The task offloading problem in vehicular networks is modeled as a Markov Decision Process(MDP).An improved algorithm,named LN-TD3,is proposed building upon the traditional Twin Delayed Deep Deterministic Policy Gradient(TD3).This improvement incorporates Long Short-Term Memory(LSTM)networks to approximate the policy and value functions.The system state is normalized to accelerate network convergence and enhance training stability.Simulation results demonstrate that LN-TD3 outperforms both fully local computation and fully offloaded computation by more than two times.In terms of convergence speed,LN-TD3 exhibits approximately a 20%improvement compared to DDPG and TD3.
作者
李亚
王卫岗
张原
刘瑞鹏
Li Ya;Wang Weigang;Zhang Yuan;Liu Ruipeng(Institute of Physics and Electronic Information,Henan Polytechnic University,Jiaozuo 454000,China)
出处
《电子测量技术》
北大核心
2024年第6期64-70,共7页
Electronic Measurement Technology
基金
中层大气和全球环境探测重点实验室开放课题(LAGEO-2022-02)项目资助。