期刊文献+

基于GAN改进的红外光与可见光图像融合算法研究

An Improved Infrared and Visible Image Fusion Algorithm Based on GAN
下载PDF
导出
摘要 针对夜晚户外场景下,传统的单一鉴别器生成对抗网络(GAN)容易忽略红外光的亮度信息和边缘信息的问题,提出一种基于注意力机制与双鉴别器的红外光与可见光图像融合算法。首先,为了有针对性地获得红外光图像的目标信息和可见光图像的背景纹理信息,在生成器网络中引入通道注意力机制;其次,使用双鉴别器的生成对抗网络,并设计一种新的鉴别器输入,在提高训练稳定性的同时更好地保留源图像信息;最后,损失函数设置为对抗损失、结构相似性损失和梯度损失,以约束鉴别器使其生成细节信息丰富的融合图像。在TNO数据集上的实验结果表明,所提算法得到的融合图像梯度变化更明显、边缘更加清晰,更符合人眼视觉效果。 Aiming at the problem that a single traditional discriminator Generative Adversarial Network(GAN)tends to ignore the brightness information and edge information of infrared light in the outdoor scene at night,a fusion algorithm of infrared and visible images based on attention mechanism and dual discriminators is proposed.Firstly,in order to pertinently obtain target information of infrared images and background texture information of visible images,a channel attention mechanism is introduced into the generator network.Secondly,the GAN with two discriminators is used,and a new discriminator input is designed to improve the training stability while better preserving the source image information.Finally,the loss functions are set as adversarial loss,structural similarity loss and gradient loss to constrain the discriminator for generating fusion images with rich details.The experimental results on the TNO dataset show that the fusion image obtained by this algorithm has more significant gradient changes and clearer edges,which is more in line with human visual effects.
作者 鲁晓涵 李洋 贾耀东 邰昱博 徐宇 LU Xiaohan;LI Yang;JIA Yaodong;TAI Yubo;XU Yu(Changchun University of Science and Technology,Changchun 130000,China)
机构地区 长春理工大学
出处 《电光与控制》 CSCD 北大核心 2024年第6期42-46,73,共6页 Electronics Optics & Control
基金 吉林省科技发展计划项目(20230101174JC) 吉林省自然科学基金(20200401090GX)。
关键词 图像融合 红外光与可见光图像 生成对抗网络 注意力机制 image fusion infrared and visible light images Generative Adversarial Network(GAN) attention mechanism
  • 相关文献

参考文献5

二级参考文献27

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部