摘要
[目的]硝态氮(NO_(3)^(-)-N)是多数植物吸收利用的主要氮素形态之一,NO_(3)^(-)-N的跨膜运输需要耦合质子共转运,质子运转需要细胞膜上的质子泵提供质子驱动力。本研究通过分析拟南芥细胞膜质子泵AHA1和AHA2对硝态氮吸收的信号网络,以明确硝态氮吸收过程中的分子调控机制。[方法]以野生型Col-0、质子泵基因突变体aha1-9、aha2-5以及恢复系AHA1/aha1-9、AHA2/aha2-5为试验材料,在不同NO_(3)^(-)-N浓度(1、10和20mmol/L)培养基上培养10天,观察其表型,记录根系生长以及生物量变化,测定根系细胞膜质子泵蛋白及其磷酸化水平变化,检测根系中参与NO_(3)^(-)-N响应与转运相关基因(NRT1.1、NRT2.1、NRT2.2、NRT2.4和NLP7)和生长素响应与转运相关基因(ARF11、IAA6、PIN7和SAUR57)的相对表达量。[结果]20 mmol/L NO_(3)^(-)-N处理下各材料之间的生长无显著差异。在1和10 mmol/L NO_(3)^(-)-N条件下,与野生型相比,aha1-9和aha2-5的主根长度、侧根数量、根部和地上部生物量均显著降低。1 mmol/L NO_(3)^(-)-N时,aha1-9的上述指标与野生型的差异显著大于aha2-5。恢复系AHA1/aha1-9、AHA2/aha2-5在各个NO_(3)^(-)-N供应水平下均与野生型差异不显著。通过分离根系细胞膜发现,在1、10 mmol/L NO_(3)^(-)-N条件下,相比野生型,aha1-9和aha2-5的细胞膜质子泵蛋白水平分别降低了68%、19%和36%、53%,质子泵蛋白磷酸化水平分别降低了83%、43%和16%、42%;在20 mmol/L NO_(3)^(-)-N条件下,aha1-9和aha2-5的质子泵蛋白水平与野生型差异不显著,但磷酸化水平显著降低。通过RT-qPCR测定发现,在1 mmol/L NO_(3)^(-)-N条件下,aha1-9、aha2-5根系中的NRT1.1、NRT2.1、NRT2.2、NLP7表达量相比野生型显著下调,10和20 mmol/L NO_(3)^(-)-N条件下均没有显著差异。此外,在1和10 mmol/L NO_(3)^(-)-N条件下aha1-9、aha2-5中的ARF11、IAA6、PIN7和SAUR57表达量显著上调,然而在20 mmol/L NO_(3)^(-)-N条件下其表达量没有显著差异。[结论]低氮条件下,敲除细胞膜质子泵基因不仅降低其自身蛋白的合成和磷酸化水平,同时也影响硝酸盐转运蛋白基因和生长素相关基因的表达,进而抑制植物的生长。
[Objectives]The transmembrane transport of nitrate(NO_(3)^(-))is a major pathway of N uptake and utilization for most plants.The pathway requires coupled proton(H+)cotransport,and the proton motive force is provided by the plasma membrane(PM)H+-ATPase.In this study,we examined the involvement of PM H+-ATPase AHA1 and AHA2 in NO_(3)^(-)-N uptake,with the aim of revealing the molecular mechanism of NO_(3)^(-)-N acquisition in Arabidopsis root.[Methods]Wild-type Col-0,PM H+-ATPase single mutant aha1-9,aha2-5 and complementation lines AHA1/aha1-9,AHA2/aha2-5 were used as experimental materials.All the seedlings were grown on mediums with NO_(3)^(-)concentrations of 1,10,and 20 mmol/L for 10 days,respectively.Then the root growth and biomass of seedlings were investigated,and the protein and phosphorylation level of root PM H+-ATPase were determined.The expression of genes involved in NO_(3)^(-)-N and auxin response and transport(NRT1.1,NRT2.1,NRT2.2,NRT2.4 and NLP7;ARF11,IAA6,PIN7 and SAUR57)were detected.[Results]There was no significant difference in the growth of all genotype seedlings under 20 mmol/L NO_(3)^(-)-N treatment.While the growth of aha1-9 and aha2-5 were inhibited compared with Col-0 at 1 mmol/L and 10 mmol/L NO_(3)^(-)-N,the root biomass decreased by 55%,31%,45%and 29%,shoot biomass decreased by 55%,27%,39%and 25%,root length reduced by 38%,11%,22%and 13%,the number of lateral roots reduced by 55%,33%,47%and 38%,respectively.In addition,the differences of above indices of aha1-9 with the wild type were significantly lower than those of aha2-5 at 1 mmol/L NO_(3)^(-)-N.And the seedling growth of complementation lines AHA1/aha1-9 and AHA2/aha2-5 were similar to Col-0 under all the NO_(3)^(-)-N concentrations.By separating cell membranes in root,we found that protein levels of PM H+-ATPase in aha1-9 and aha2-5 decreased by 68%,19%,36%and 53%,and phosphorylation levels decreased by 83%,43%,16%and 42%at 1 mmol/L and 10 mmol/L NO_(3)^(-)-N,respectively.Interestingly,protein levels in aha1-9 and aha2-5 were not different from those of the wild type at 20 mmol/L NO_(3)^(-)N,but phosphorylation levels were significantly reduced.Relative to the wild type,the expression of NRT1.1,NRT2.1,NRT2.2 and NLP7 in aha1-9 and aha2-5 roots were significantly down-regulated at 1 mmol/L NO_(3)^(-)-N,not significantly changed at 10 mmol/L and 20 mmol/L NO_(3)^(-)-N.The expression of ARF11,IAA6,PIN7 and SAUR57 in aha1-9 and aha2-5 were significantly up-regulated at 1 mmol/L and 10 mmol/L NO_(3)^(-)-N,but not at 20 mmol/L NO_(3)^(-)-N.[Conclusions]Under low NO_(3)^(-)-N conditions,knockout of the PM H+-ATPase not only reduces its own protein synthesis and phosphorylation levels,but also influences the expression of nitrate transporters and auxin transporters,resulting in the inhibition of plant growth.
作者
潘婷
张雅琳
周博阳
成元
喻敏
张茂星
朱毅勇
PAN Ting;ZHANG Ya-lin;ZHOU Bo-yang;CHENG Yuan;YU Min;ZHANG Mao-xing;ZHU Yi-yong(International Research Centre for Environmental Membrane Biology/School of Food Science and Engineering,Foshan University,Foshan,Guangdong 528200,China;College of Resource and Environment Science,Nanjing Agricultural University,Nanjing,Jiangsu 210095,China)
出处
《植物营养与肥料学报》
CAS
CSCD
北大核心
2024年第4期666-676,共11页
Journal of Plant Nutrition and Fertilizers
基金
国家自然科学基金项目(32102482,42107047)
广东省基础与应用基础研究基金项目(2019A1515110070)。