期刊文献+

水下航行体首部边界层转捩噪声源定位研究

Research on localization of noise sourcesin boundary layer transition at the bow of underwater vehicle
下载PDF
导出
摘要 为研究水下航行体首部边界层转捩区的噪声特性及声源位置,本文采用缩比SUBOFF模型在高速水洞中开展了试验研究。水洞试验段来流速度为3~7 m/s,基于模型长度的雷诺数为10^(7)量级,首部表面布置14支脉动压力传感器,测量了首部层流边界层、转捩和湍流边界层的脉动压力场。为定位声源位置,采用传声器阵列进行了水下航行体首部主要噪声源的三维声源定位,定位方法为基于小波变换的函数波束形成方法。试验结果表明:随着来流速度增大,首部边界层转捩起始位置不断向前移动,同时脉动压力频谱中的中频分量显著增加。声源定位结果表明:水下航行体首部主要噪声源呈三维环形分布,且声源所在流向位置与边界层转捩区位置基本重合,表明边界层转捩区是水下航行体首部的主要噪声源。 The boundary layer transition at the bow of an underwater vehicle(UV)is one ofthe major sources of the fairing self-noise.To study the noise characteristics of the boundary layertransition at the bow of UV and the sound source locations,a scaled SUBOFF model was adoptedfor the experimental study in a high-speed water tunnel.The inflow velocity of the water tunneltest section was 3–7 m/s,and the Reynolds number based on the model length was about 10^(7).Inaddition,fourteen dynamic pressure sensors were arranged on the bow surface to measure thefluctuating pressure field within the region of laminar,transition and turbulent boundary layers.A phased microphone array was employed to locate the three-dimensional sound source at thebow of SUBOFF.The localization method adopts a functional beamforming method based ontime-frequency transformation.The experimental results demonstrate that the transition position of the bow boundary layer moves forward synchronously with the increase of the incoming flowspeed.Meanwhile,the amplitude of the mid-frequency component of the fluctuating pressurespectrum significantly rise.Furthermore,the results of sound source location show that the three-dimensional sound source presents a ring shape,and the streamwise position of the sound sourcealmost coincides with the transition position of the boundary layer.This indicates that thetransition region of the boundary layer is the main noise source in the bow region of theunderwater vehicle.
作者 徐琛 李晓东 柏宝红 黄红波 刘建华 XU Chen;LI Xiaodong;BAI Baohong;HUANG Hongbo;LIU Jianhua(Research Institute of Aero-Engine,Beihang University,Beijing 100191,China;AECC Commercial Aircraft Engine Co.Ltd.,Shanghai 201108,China;School of Energy and Power Engineering,Beihang University,Beijing 100191,China;COMAC Beijing Aircraft Technology Research Institute,Beijing 102211,China;Taihu Laboratory of Deepsea Technological Science,China Ship Scientific Research Center,Wuxi 214082,China)
出处 《实验流体力学》 CAS CSCD 北大核心 2024年第2期52-58,共7页 Journal of Experiments in Fluid Mechanics
基金 国家重大研发计划项目(2018YFA0703300) 国家自然科学基金项目(91952301,12102483)。
关键词 水下航行体 边界层转捩 水动力噪声 导流罩 自噪声 三维声源定位 噪声源 underwater vehicle boundary layer transition hydrodynamic noise fairing self-noise three-dimensional source localization noise source
  • 相关文献

参考文献1

二级参考文献49

  • 1Abraham B M, Keith W L. Direct measurements of turbulent boundary layer wall pressure wave number frequency spectra[J]. J Fluids Eng, 1988, 120: 29-39.
  • 2Manoha E.The wave number-frequency spectrum of the wall pressure fluctuations beneath turbulent boundary layer[R],AIAA Paper 96-1758,1996.
  • 3Pompel F J, Wooh S C. Phased array element shapes for suppressing grating lobes[J]. J Acoust. Soc. Am, 2002, 111(5):2040-2048.
  • 4Strawderman W A. Turbulence induced plate vibration: Some effects of fluid loading on finite and infinite plates [J]. J Acoust. Soc. Am, 1972, 52(2): 1537-1552.
  • 5Davies H G. Sound from turbulent boundary layer excited panels[J]. J Acoust. Soc. Am, 1971, 49(3): 878-889.
  • 6Aupperle F A, Lambert R F. Acoustic radiation from plates excited by flow noise[J].J Sound and Vibration, 1973, 26(2):223-245.
  • 7Chandiramani K L.Vibration response of fluid loaded structure to low speed flow noise[J]. J Acoust. Soc. Am,1997, 61(6):1460-1470.
  • 8Chandiramani K L. Response of underwater structures to convective component of flow noise[J]. J Acoust. Soc. Am,1983,73(3): 835-839.
  • 9Rumerman M L. Frequency flow speed dependence of structural response to turbulent boundary pressure exaltation[J]. J Acoust. Soc. Am, 1992, 91(2): 907-911.
  • 10Hwang Y F, Maidanik G. A wave number analysis of the coupling of a structural mode and flow turbulence[J]. J Sound and Vibration, 1990, 142(1): 135-152.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部